
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Krishna Palem
Prof. Vivek Sarkar
Department of Computer Science
Rice University
{palem,vsarkar}@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 15 24 October 2013

2

Acknowledgments!
•  Slides from previous offerings of COMP 515 by Prof. Ken

Kennedy
— http://www.cs.rice.edu/~ken/comp515/

•  POPL 1996 tutorial by Krishna Palem & Vivek Sarkar

3

Control Dependences!

Chapter 7

4

Control Dependences!
•  Constraints posed by control flow

 DO 100 I = 1, N

S1 IF (A(I-1).GT. 0.0) GO TO 100

S2 A(I) = A(I) + B(I)*C

100 CONTINUE!

If we vectorize by...
S2 A(1:N) = A(1:N) + B(1:N)*C

 DO 100 I = 1, N

S1 IF (A(I-1).GT. 0.0) GO TO 100

 100 CONTINUE

…we get the wrong answer
•  We are missing dependences
•  There is a dependence from S1 to S2 - a control dependence

S2 δ1 S1

4

5

Control Dependences !!
•  Two strategies to deal with control dependences:

— If-conversion: expose by converting control dependences to data
dependences. Used for vectorization
–  Also supported in SIMT hardware (e.g., GPGPUs) which

automatically masks out statements with control conditions =
false

— Explicitly compute control dependences. Used for coarse-grained
parallelism, or in cases where guarded execution is inefficient for
vectorization.

If-conversion!
•  Underlying Idea: Convert statements affected by branches to

conditionally executed statements

! DO 100 I = 1, N

S1 IF (A(I-1).GT. 0.0) GO TO 100

S2 A(I) = A(I) + B(I)*C

100 CONTINUE

!

can be converted to:

 DO I = 1, N

 IF (A(I-1).LE. 0.0) A(I) = A(I) + B(I)*C

 ENDDO

If-conversion!
 DO 100 I = 1, N

S1 IF (A(I-1).GT. 0.0) GO TO 100

S2 A(I) = A(I) + B(I) * C

S3 B(I) = B(I) + A(I)

100 CONTINUE

•  can be converted to:
 DO 100 I = 1, N

S2 IF (A(I-1).LE. 0.0) A(I) = A(I) + B(I) * C

S3 IF (A(I-1).LE. 0.0) B(I) = B(I) + A(I)

100 CONTINUE

•  vectorize using the Fortran WHERE statement:
! DO 100 I = 1, N

S2 IF (A(I-1).LE. 0.0) A(I) = A(I) + B(I) * C

100 CONTINUE

S3 WHERE (A(0:N-1).LE. 0.0) B(1:N) = B(1:N) + A(1:N)

If-conversion!
•  If-conversion assumes a target notation of guarded execution

in which each statement implicitly contains a logical expression
controlling its execution

S1 IF (A(I-1).GT. 0.0) GO TO 100

S2 A(I) = A(I) + B(I)*C

100 CONTINUE

!

•  with guarded execution instead:
!

S1 M = A(I-1).GT. 0.0

S2 IF (.NOT. M) A(I) = A(I) + B(I)*C

100 CONTINUE

9

Branch Classification!

•  Forward Branch: transfers control to a target that occurs
lexically after the branch but at the same level of nesting

•  Backward Branch: transfers control to a statement occurring
lexically before the branch but at the same level of nesting

•  Exit Branch: terminates one or more loops by transferring
control to a target outside a loop nest
— The break and return statements in C are examples of exit

branches, when they occur inside a loop

If-conversion!
•  If-conversion is a composition of two different

transformations:
1. Branch relocation
2. Branch removal

11

Branch removal for If-conversion!
•  Basic idea:

— Make a pass through the program.
— Maintain a Boolean expression cc that represents the condition that

must be true for the current expression to be executed
— On encountering a branch, conjoin the controlling expression into cc
— On encountering a target of a branch, its controlling expression is

disjoined into cc

11

12

Branch Removal: Forward Branches!
•  Remove forward branches by inserting appropriate guards

! !DO 100 I = 1,N
C1 IF (A(I).GT.10) GO TO 60

20 A(I) = A(I) + 10

C2 IF (B(I).GT.10) GO TO 80

40 B(I) = B(I) + 10

60 A(I) = B(I) + A(I)

80 B(I) = A(I) - 5

 ENDDO

==>

 DO 100 I = 1,N
 m1 = A(I).GT.10

20 IF(.NOT.m1) A(I) = A(I) + 10
 IF(.NOT.m1) m2 = B(I).GT.10

40 IF(.NOT.m1.AND..NOT.m2) B(I) = B(I) + 10
60 IF(.NOT.m1.AND..NOT.m2.OR.m1)A(I) = B(I) + A(I)
80 IF(.NOT.m1.AND..NOT.m2.OR.m1.OR..NOT.m1

 .AND.m2) B(I) = A(I) - 5
 ENDDO

13

Branch Removal: Forward Branches!
•  We can simplify to:

 DO 100 I = 1,N

 m1 = A(I).GT.10

20 IF(.NOT.m1) A(I) = A(I) + 10

 IF(.NOT.m1) m2 = B(I).GT.10

40 IF(.NOT.m1.AND..NOT.m2)

 B(I) = B(I) + 10

60 IF(m1.OR..NOT.m2)

 A(I) = B(I) + A(I)

80 B(I) = A(I) - 5

 ENDDO

•  and then vectorize to:
 m1(1:N) = A(1:N).GT.10

20 WHERE(.NOT.m1(1:N)) A(1:N) = A(1:N) + 10

 WHERE(.NOT.m1(1:N)) m2(1:N) = B(1:N).GT.10

40 WHERE(.NOT.m1(1:N).AND..NOT.m2(1:N))

 B(1:N) = B(1:N) + 10

60 WHERE(m1(1:N).OR..NOT.m2(1:N))

 A(1:N) = B(1:N) + A(1:N)

80 B(1:N) = A(1:N) - 5 13

14

Removal of Forward Branches: Correctness!

•  To show correctness we must establish:
— the guard for statement instance in the new program is true if and

only if the corresponding statement in the old program is executed,
–  unless the statement has been introduced by the compiler to

capture a guard variable value, which must be executed at the
point the conditional expression would have been evaluated

— the order of execution of statements in the new program with true
guards is the same as the order of execution of those statements
in the original program

— Any expression with side effects is evaluated exactly as many times
in the new program as in the old program

15

Control Flow Graph Definition (Recap)!

16

Control Flow Graph: Example!

17

Workbook!
! !DO 100 I = 1,N

C1 IF (A(I).GT.10) GO TO 60

20 A(I) = A(I) + 10

C2 IF (B(I).GT.10) GO TO 80

40 B(I) = B(I) + 10

60 A(I) = B(I) + A(I)

80 B(I) = A(I) - 5

 ENDDO

 DO 100 I = 1,N
 m1 = A(I).GT.10

20 IF(.NOT.m1) A(I) = A(I) + 10
 IF(.NOT.m1) m2 = B(I).GT.10

40 IF(.NOT.m1.AND..NOT.m2) B(I) = B(I) + 10
60 IF(.NOT.m1.AND..NOT.m2.OR.m1)A(I) = B(I) + A(I)
80 IF(.NOT.m1.AND..NOT.m2.OR.m1.OR..NOT.m1

 .AND.m2) B(I) = A(I) - 5
 ENDDO

A Predicated instruction has the following form which converts
 If(pr=true) go to s2
 s1

into
 If(pr=false) s1
 If(pr=true | pr=false) s2

1.  Identify the predicated instructions
and enumerate the relationship
between predicated form and the
non-predicated form.

2.  Enumerate all data dependencies
again?

1)  Construct	 CFG	
2)  List	 basic	 blocks	 which	 are	 maximal	

segments	 without	 control	 flow	
3) Write	 out	 all	 the	 data	 dependencies.	 	

Note:	 data	 dependencies	 are	 within	 a	
basic	 block.	

