COMP 515: Advanced Compilation for Vector and Parallel Processors

Prof. Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515
Control Dependences (Recap)

Chapter 7
IF Conversion: Forward Branches

• Remove forward branches by inserting appropriate guards

```fortran
DO 100 I = 1,N
  C_1  IF (A(I).GT.10) GO TO 60
  20  A(I) = A(I) + 10
  C_2  IF (B(I).GT.10) GO TO 80
  40  B(I) = B(I) + 10
  60  A(I) = B(I) + A(I)
  80  B(I) = A(I) - 5
ENDDO
```

→

```fortran
DO 100 I = 1,N
  m1 = A(I).GT.10
  20  IF(.NOT.m1) A(I) = A(I) + 10
  IF(.NOT.m1) m2 = B(I).GT.10
  40  IF(.NOT.m1.AND..NOT.m2) B(I) = B(I) + 10
  60  IF(.NOT.m1.AND..NOT.m2.OR.m1)A(I) = B(I) + A(I)
  80  IF(.NOT.m1.AND..NOT.m2.OR.m1.OR..NOT.m1
      .AND.m2) B(I) = A(I) - 5
ENDDO
```
IF Conversion: Forward Branches

• We can simplify to:

```fortran
DO 100 I = 1,N
   m1 = A(I).GT.10
20  IF(.NOT.m1) A(I) = A(I) + 10
    IF(.NOT.m1) m2 = B(I).GT.10
40  IF(.NOT.m1.AND..NOT.m2)
    B(I) = B(I) + 10
60  IF(m1.OR..NOT.m2)
    A(I) = B(I) + A(I)
80  B(I) = A(I) - 5
ENDDO
```

• and then vectorize to:

```fortran
m1(1:N) = A(1:N).GT.10
20  WHERE(.NOT.m1(1:N)) A(1:N) = A(1:N) + 10
    WHERE(.NOT.m1(1:N)) m2(1:N) = B(1:N).GT.10
40  WHERE(.NOT.m1(1:N).AND..NOT.m2(1:N))
    B(1:N) = B(1:N) + 10
60  WHERE(m1(1:N).OR..NOT.m2(1:N))
    A(1:N) = B(1:N) + A(1:N)
80  B(1:N) = A(1:N) - 5
```
Control Dependence: Definition

Node Y is control dependent on node X with label L in CFG if and only if

1. there exists a nonnull path $X \rightarrow Y$, starting with the edge labeled L, such that Y post-dominates every node, W, strictly between X and Y in the path, and

2. Y does not post-dominate X.

Example: Acyclic CFG and its Control Dependence Graph (CDG)
Control Dependence and Parallelization

- From Chapter 2: Most loop transformations are unaffected by loop-independent dependences
 - A forward-branch need not inhibit coarse-grain parallelization

- Iteration-reordering transformations like loop reversal, loop skewing, strip mining, index-set splitting, loop interchange do not affect loop-independent dependences

- Statement reordering transformations might be problematic: loop fusion, loop distribution
 - Distribution can be performed by including control dependences in recurrence analysis, and performing scalar expansion on branch condition
 - Fusion of loops that do not contain exit branches is also possible
Loop Distribution

• Example:

DO I = 1, N
1 IF (A(I).NE.0) THEN
2 IF (B(I)/A(I).GT.1) GOTO 4
ENDIF
3 A(I) = B(I)
GOTO 8
4 IF (A(I).GT.T) THEN
5 T = (B(I) - A(I)) + T
ELSE
6 T = (T + B(I)) - A(I)
7 B(I) = A(I)
ENDIF
8 C(I) = B(I) + C(I)
ENDDO

Control Dependence Graph
for loop body
Loop Distribution

- Fusion into "like" regions
 - Loop 1 is parallel
 - Loop 2 is sequential
 - Loop 3 is parallel

```plaintext
DO I = 1, N
  1   IF (A(I).NE.0) THEN
  2     IF (B(I)/A(I).GT.1) GOTO 4
  ENDIF
  3   A(I) = B(I)
  GOTO 8
  4   IF (A(I).GT.T) THEN
  5     T = (B(I) - A(I)) + T
  ELSE
  6     T = (T + B(I)) - A(I)
  7     B(I) = A(I)
  ENDIF
  8   C(I) = B(I) + C(I)
ENDDO
```

Selective IF Conversion: Need execution variables E2(I) and E4(I) to hold result of branches at statement 2 and 4.
Conclusion

- Idea behind control flow dependences
- If-conversion
 - Types of branches and branch removal
 - Iterative dependences (append range to each statement)
- Control Dependence Procedure as alternative to if-conversion
- Execution model for control dependence graphs
- Loop Distribution (selective if-conversion)
- Code Generation
Performance Issues with Wavefront Transformation

- Large synchronization overhead
 - Need barrier for each outer-iteration (J2 loop)
- Performance issues
 - Non-uniform iteration lengths in DOALL loop
 - Non-contiguous data access after skewing (in sequential version or when DOALL loop is chunked)

```fortran
! ex.2
DO J2 = 1, N+M-1
   ILW = MAX(1,J2-M+1)
   IUP = MIN(N,J2)
   PARALLEL DO I = ILW, IUP
      J = J2 - I + 1
      A(J,I) = A(J-1,I) + A(J,I-1)
   END DO
END DO
```
Doacross Parallelization

- Loop-carried dependences exist among iterations
- Parallel execution can be enabled via point-to-point synchronization among iterations of DOACROSS loop
- Synchronizations are expressed using POST and WAIT

! ex.2
DOACROSS I = 1, N
 DO J = 1, M
 IF (I.GE.2) WAIT(I-1,J)
 A(J,I) = A(J-1,I) + A(J,I-1)
 POST(I,J)
 END DO
END DO
Implementing POST and WAIT operations

Two approaches:

1. **Use event variables (Section 6.6.2 of textbook)**
 - Allocate an array of event variables, one per iteration
 - Perform POST and WAIT operations on event variables, e.g., POST (EV(I, J)) and WAIT (EV(I-1, J))
 - Pros: straightforward implementation approach
 - Cons: inefficient in space, not adaptable to available hardware parallelism

2. **Special runtime support for post/wait (OpenMP 4.1)**
 - Each processor maintains only n integer synchronization variables, where n is the number of loops in a doacross loop nest
 - Dependent iteration examines source iteration’s sync variables to check ready condition
 - Pros: space-efficient (only n*P sync variables for P processors)
 - Cons: need runtime support in addition to compiler transformation
Extension with 2x unroll/tiling

DO I = 2, N-1
 DO J = 2, N-1
 A(I, J) = .25 * (A(I-1, J) + A(I, J-1) +
 A(I+1, J) + A(I, J+1))
 ENDDO
ENDDO

==>
POST (EV(1, 1))
DOACROSS I = 2, N-1
 K = 0
 DO J = 2, N-1, 2 ! TILE SIZE = 2
 K = K+1
 WAIT (EV(I-1,K))
 DO m = J, MIN(J+1, N-1)
 A(I, m) = .25 * (A(I-1, m) + A(I, m-1) +
 A(I+1, m) + A(I, m+1))
 ENDDO
 POST (EV(I, K+1))
ENDDO
ENDDO

ENDDO
Extension with 2x unroll/tiling (contd)
Doacross Support in OpenMP 4.1

- **ordered(\(n\))**: \(n\) specifies nest-level of doacross
- **depend(sink: \(vect\))**: wait for iteration \(vect\) to reach \(source\)
- **depend(source)**: notify that current iteration reached
- **C code example**

```c
! ex.5b
#pragma omp for ordered(2)
for (i = 1; i < n; i++) {
    for (j = 1; j < m; j++) {
        A[i][j] = foo(i, j);       // S1
        #pragma omp ordered depend(sink: i-1,j) \\n        depend(sink: i,j-1)
        B[i][j] = bar(A[i][j],
                    B[i-1][j],
                    B[i][j-1]);       // S2
        #pragma omp ordered depend(source)
        C[i][j] = baz(B[i][j]);   // S3
    }
}
```
Compiler Improvement of Register Usage

Chapter 8
Overview

• Improving memory hierarchy performance by compiler transformations
 — Scalar Replacement
 — Unroll-and-Jam

• Saving memory loads & stores

• Make good use of the processor registers
Motivating Example

DO I = 1, N
 DO J = 1, M
 A(I) = A(I) + B(J,I)
 ENDDO
ENDDO

• A(I) can be left in a register throughout the inner loop

• Standard register allocation fails to recognize this

DO I = 1, N
 T = A(I)
 DO J = 1, M
 T = T + B(J,I)
 ENDDO
 A(I) = T
ENDDO

• All loads and stores to A in the inner loop have been saved

• High chance of T being allocated a register by standard register allocation
Scalar Replacement

- Convert array reference to scalar reference to improve performance of the register allocator
- Our approach is to use dependences to achieve these memory hierarchy transformations
Dependence and Memory Hierarchy

- True or Flow dependence - save loads and cache misses
- Anti dependence - save cache misses
- Output dependence - save stores and cache misses
- Input “dependence” - save loads and cache misses
 - Read-read control flow path with no intervening write

\[
\begin{align*}
A(I) &= \ldots + B(I) \\
\ldots &= A(I) + k \\
A(I) &= \ldots \\
\ldots &= B(I)
\end{align*}
\]
Dependence and Memory Hierarchy

• Loop Carried dependences - Consistent dependences most useful for memory management purposes

• Consistent dependences - dependences with constant threshold (dependence distance)
Dependence and Memory Hierarchy

• Problem of overcounting optimization opportunities. For example

\[
S1: A(I) = \ldots
\]
\[
S2: \ldots = A(I)
\]
\[
S3: \ldots = \text{A(I)}
\]

• But we can save only two memory references not three

• Solution - Prune edges from dependence graph which don't correspond to savings in memory accesses
Using Dependences

• In the reduction example

\[
\begin{align*}
&\text{DO } I = 1, N \\
&\quad \text{DO } J = 1, M \\
&\quad \quad A(I) = A(I) + B(J) \\
&\quad \text{ENDDO} \\
&\text{ENDDO}
\end{align*}
\]

\[
\begin{align*}
&\text{DO } I = 1, N \\
&\quad T = A(I) \\
&\quad \text{DO } J = 1, M \\
&\quad \quad T = T + B(J) \\
&\quad \text{ENDDO} \\
&\quad A(I) = T \\
&\text{ENDDO}
\end{align*}
\]

• True dependence - replace the references to \(A \) in the inner loop by scalar \(T \)

• Output dependence - store can be moved outside the inner loop

• Anti dependence - load can be moved before the inner loop
Scalar Replacement

- Example: Scalar Replacement in case of loop independent dependence

DO I = 1, N

A(I) = B(I) + C

X(I) = A(I)*Q

ENDDO

DO I = 1, N

t = B(I) + C

A(I) = t

X(I) = t*Q

ENDDO

- One fewer load for each iteration for reference to A
Scalar Replacement

• Example: Scalar Replacement in case of loop carried dependence spanning single iteration

\[
\begin{align*}
&\text{DO } I = 1, N \\
&A(I) = B(I-1) \\
&B(I) = A(I) + C(I)
\end{align*}
\]

\[
\begin{align*}
&tB = B(0) \\
&\text{DO } I = 1, N \\
&tA = tB \\
&A(I) = tA \\
&tB = tA + C(I) \\
&B(I) = tB
\end{align*}
\]

\[
\begin{align*}
&\text{ENDDO}
\end{align*}
\]

• One fewer load for each iteration for reference to B which had a loop carried true dependence spanning 1 iteration

• Also one fewer load per iteration for reference to A
Scalar Replacement

- Example: Scalar Replacement in case of loop carried dependence spanning multiple iterations

\[
\begin{align*}
\text{DO } I &= 1, N \\
A(I) &= B(I-1) + B(I+1) \\
\text{ENDDO}
\end{align*}
\]

\[
\begin{align*}
t_1 &= B(0) \\
t_2 &= B(1) \\
\text{DO } I &= 1, N \\
t_3 &= B(I+1) \\
A(I) &= t_1 + t_3 \\
t_1 &= t_2 \\
t_2 &= t_3 \\
\text{ENDDO}
\end{align*}
\]

- One fewer load for each iteration for reference to B which had a loop carried input dependence spanning 2 iterations

- Invariants maintained were

\[
t_1 = B(I-1); t_2 = B(I); t_3 = B(I+1)
\]
Eliminate Scalar Copies

```
t1 = B(0)
t2 = B(1)
DO I = 1, N
    t3 = B(I+1)
    A(I) = t1 + t3
    t1 = t2
    t2 = t3
ENDDO

• Unnecessary register-register copies
• Unroll loop 3 times
```

```
t1 = B(0)
t2 = B(1)
mN3 = MOD(N, 3)
DO I = 1, mN3
    t3 = B(I+1)
    A(I) = t1 + t3
    t1 = t2
    t2 = t3
ENDDO

DO I = mN3 + 1, N, 3
    t3 = B(I+1)
    A(I) = t1 + t3
    t1 = B(I+2)
    A(I+1) = t2 + t1
    t2 = B(I+3)
    A(I+2) = t3 + t2
ENDDO
```