COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Vivek Sarkar

Department of Computer Science
Rice University
vsarkar®@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 15 29 October 2015

Control Dependences (Recap)

Chapter 7

IF Conversion: Forward Branches

* Remove forward branches by inserting appropriate guards
DO 100 I = 1,N
C, IF (A(I).GT.10) GO TO 60

20 A(I) = A(I) + 10
C, IF (B(I).GT.10) GO TO 80
40 B(I) = B(I) + 10
60 A(I) = B(I) + A(I)
80 B(I) = A(I) - 5
ENDDO
> 4

DO 100 I = 1,N
ml = A(I).GT.10

20 TF(.NOT.ml) A(I) = A(I) + 10
IF(.NOT.ml) m2 = B(I).GT.10
40 ITF(.NOT.ml.AND..NOT.m2) B(I) = B(I) + 10
60 TF(.NOT.ml.AND..NOT.m2.0R.m1)A(I) = B(I) + A(I)
80 TF(.NOT.ml.AND..NOT.m2.0R.ml1.0R..NOT.ml
.AND.m2) B(I) = A(I) - 5
ENDDO

IF Conversion: Forward Branches

* We can simplify to:

DO 100 I = 1,N

ml = A(I).GT.10
20 IF(.NOT.ml) A(I) = A(I) + 10
IF(.NOT.ml) m2 = B(I).GT.10
40 IF(.NOT.ml.AND..NOT.m2)
B(I) = B(I) + 10

60 IF (ml.0OR..NOT.m2)
A(I) = B(I) + A(I)
80 B(I) = A(I) - 5
ENDDO

* and then vectorize to:

ml(l:N) = A(1:N).GT.10
20 WHERE (.NOT.ml (1:N)) A(1:N) = A(l:N) + 10
WHERE (.NOT.ml1 (1:N)) m2(1:N) = B(1l:N).GT.10

40 WHERE (.NOT.m1 (1:N) .AND..NOT.m2 (1:N))
B(1:N) = B(1:N) + 10

60 WHERE (ml1 (1:N) .OR..NOT.m2 (1:N))
A(1:N) = B(1l:N) + A(1l:N)

80 B(l:N) = A(1:N) - 5

4

Control Dependence: Definition

Node Y is control dependent on node X with label L in CFG if
and only if

1. there exists a nonnull path X — Y, starting with the edge
labeled L, such that Y post-dominates every node, W,
strictly between X and Y in the path, and

2. Y does not post-dominate X.

Reference: “The Program Dependence Graph and its Use in
Optimization”, J. Ferrante et al, ACM TOPLAS, 1987

Example: Acyclic CFG and its
Control Dependence Graph (CDG)

START STOP
T ¢ / \\
1 START 3 1
<0 >0
POSTDOMINATOR TREE
=0
2 START

STOP

CONTROL FLOW GRAPH CONTROL DEPENDENCE GRAPH

Control Dependence and Parallelization

* From Chapter 2: Most loop transformations are unaffected by
loop-independent dependences

— A forward-branch need not inhibit coarse-grain parallelization

* Iteration-reordering transformations like loop reversal, loop
skewing, strip mining, index-set splitting, loop interchange do
not affect loop-independent dependences

* Statement reordering transformations might be problematic:
loop fusion, loop distribution

— Distribution can be performed by including control dependences in
recurrence analysis, and performing scalar expansion on branch
condition

—Fusion of loops that do not contain exit branches is also possible

Loop Distribution

* Example: Control Dependence Graph

for loop body

DO I =1, N

1 IF (A(I).NE.O) THEN
2 IF (B(I)/A(I).GT.1) GOTO 4
ENDIF
3 A(I) = B(I)
GOTO 8
IF (A(I).GT.T) THEN
5 T = (B(I) - A(I)) + T
ELSE
6 T = (T + B(I)) - A(I)
7 B(I) = A(I)
ENDIF
8 C(I) = B(I) + C(I)
ENDDO

Loop Distribution

* Fusion into "like" regions
—Loop 1 is parallel
—Loop 2 is sequential
—Loop 3 is parallel

DO I =1, N

1 IF (A(I).NE.O) THEN
2 IF (B(I)/A(I).GT.1) GOTO 4
ENDIF
3 A(I) = B(I)
GOTO 8
IF (A(I).GT.T) THEN
5 T = (B(I) - A(I)) + T
FELSE
S T = (T + B(I)) — A(I)
7 B(I) = A(I)
ENDIF Selective IF Conversion: Need execution
8 C(I) = B(I) + C(I) variables E2(I) and E4(I) to hold result
ENDDO of branches at statement 2 and 4

9

Conclusion

Idea behind control flow dependences

If-conversion
— Types of branches and branch removal
—Iterative dependences (append range to each statement)

Control Dependence Procedure as alternative to if-conversion
Execution model for control dependence graphs
Loop Distribution (selective if-conversion)

Code Generation

10

Performance Issues with Wavefront Transformation

« Large synchronization overhead

« Need barrier for each outer-iteration (J2 loop)

e Performance issues

« Non-uniform iteration lengths in DOALL loop

« Non-contiguous data access after skewing (in sequential version

or when DOALL loop is chunked)

! ex.2
DO J2 =1, N+M-1
ILW = MAX(1,J2-M+1)
IUP = MIN(N,J2)
PARALLEL DO I = ILW, IUP
J=J2 -1+ 1
A(J,I) = A(J-1,I) + A(J,I-1)
END DO
END DO

di=(1,0)
d>= (1,

. 1)

7

NN LT

.
.
.
.
——>0
.
.
.

S

» J2
11

Doacross Parallelization

e Loop-carried dependences exist among iterations

« Parallel execution can be enabled via point-to-point
synchronization among iterations of DOACROSS loop

« Synchronizations are expressed using POST and WAIT

! ex.2
DOACROSS I =1, N g PO pt p2 p3
DO J =1, M A
IF (I.GE.2) WAIT(I-1,J) ot 1ot 1ot L,
A(J,I) = A(J-1,I) + A(J,I-1) I\ ||)T }I‘
POST(I,J) T T T di=(0, 1)
END DO ol $el 441 L0 d2=(1,0)
END DO T T T

4
1
4
[
— Y
°

> I

12

Implementing POST and WAIT operations

Two approaches:

1. Use event variables (Section 6.6.2 of textbook)

« Allocate an array of event variables, one per iteration

Perform POST and WAIT operations on event variables, e.g., POST (EV(l, J))
and WAIT (EV(I-1, J))

Pros: straightforward implementation approach

Cons: inefficient in space, not adaptable to available hardware parallelism

2. Special runtime support for post/wait (OpenMP 4.1)

Each processor maintains only n integer synchronization variables, where n is
the number of loops in a doacross loop nest

Dependent iteration examines source iteration’s sync variables to check ready
condition

Pros: space-efficient (only n*P sync variables for P processors)

Cons: need runtime support in addition to compiler transformation
13

Extension with 2x unroll/tiling

DO I = 2, N-1
DO J = 2, N-1
A(I, J) = .25 * (A(I-1, J) + A(I, J-1) +
A(I+1, J) + A(I, J+1))
ENDDO
ENDDO
==>

POST (EV(1, 1))
DOACROSS I = 2, N-1
K = 0
DO J = 2, N-1, 2 ! TILE SIZE = 2
K = K+1
WAIT (EV(I-1,K))
DO m = J, MIN(J+1, N-1)
A(I, m) = .25 * (A(I-1, m) + A(I, m-1) +
A(I+1, m) + A(I, m+l))
ENDDO
POST (EV(I, K+1))
ENDDO
ENDDO

Extension with 2x unroll/tiling (contd)

ra

—»- Event synchronization

2
3
1 =3
4 J=2
S j’{
=4
6 =4 Jm=2
7 I=35 J=3
[=5
I=6 I=4 J=2
J=5 J=3
I=4

15

Doacross Support in OpenMP 4.1

« ordered(n) : nspecifies nest-level of doacross
« depend(sink: vect) : wait for iteration vectto reach source
« depend(source) : notify that current iteration reached

« C code example

! ex.5b
#pragma omp for ordered(2)
for (i = 1; i < n; i++) { J
for (J =1; j < m; j++) { A
A[i][J] = foo(i, J); // S1 >e—>e—>e

#pragma omp ordered depend(sink: i-1,j) \\

depend (sink: i,j-1) >o—>e0—>e
B[1i][]J] = bar(A[i][]],
B[i-11[31, >0——2>0——>0

B[i1[3-11)+ // 82
#pragma omp ordered depend(source)
C[i][J]1 = baz(B[i][J]1); // S3

—Se—Se—>e
—>
—>
—

Compiler Improvement of Register
Usage

Chapter 8

17

Overview

* Improving memory hierarchy performance by compiler
transformations

— Scalar Replacement
—Unroll-and-Jam

* Saving memory loads & stores

* Make good use of the processor registers

18

Motivating Example

DO I =1, N

DO I =1, N

DOJ =1, M
A(I) = A(I) + B(J,I)
ENDDO

ENDDO

* A(I) can be left in a register
throughout the inner loop

* Standard register allocation fails
to recognize this

19

T = A(I)
DOJ =1, M
T =T + B(J,I)
ENDDO
A(I) =T

ENDDO

All loads and stores to A in the
inner loop have been saved

High chance of T being allocated a
register by standard register
allocation

Scalar Replacement

* Convert array reference to scalar reference to improve
performance of the register allocator

* Our approach is to use dependences to achieve these memory
hierarchy transformations

20

Dependence and Memory Hierarchy

True or Flow dependence - save loads and cache misses
Anti dependence - save cache misses
Output dependence - save stores and cache misses

Input “"dependence” - save loads and cache misses
—Read-read control flow path with no intervening write

A) = ... + B(T)
= A(T) + k
AT) = ...
= B(I)

21

Dependence and Memory Hierarchy

* Loop Carried dependences - Consistent dependences most useful
for memory management purposes

* Consistent dependences - dependences with constant threshold
(dependence distance)

22

Dependence and Memory Hierarchy

* Problem of overcounting optimization opportunities. For example

Sl: A(T) = ...
S2: ... = A(I)
S3: ... = A(I)

* But we can save only two memory references not three

* Solution - Prune edges from dependence graph which don't
correspond to savings in memory accesses

23

Using Dependences

* In the reduction example DO I =1, N
T = A(I)
DO I =1, N DO J =1, M
T = T + B(J)
DOJ =1, M
ENDDO
A(I) =T
PR
(I) = A(I) + B(J) ENDDO
N,
* True dependence - replace the
ENDDO references to A in the inner loop by
scalar T
ENDDO * Output dependence - store can be

moved outside the inner loop

* Anti dependence - load can be moved
before the inner loop

24

Scalar Replacement

* Example: Scalar Replacement in DO I =1, N
case of loop independent
dependence t =B(I) +¢C
A(I) = t
DOI =1, N X(1) = t*0
ENDDO

A(I) = B(I) + C

X(I) = A(I)*
() (1)*Q * One fewer load for each iteration
ENDDO for reference to A

25

Scalar Replacement

* Example: Scalar Replacement in
case of loop carried dependence
spanning single iteration

DOI =1, N
A(I) = B(I-1)
B(I) = A(I) + C(I)

ENDDO

26

tB = B(0)
DOI =1, N
tA = tB
A(I) = tA
tB = tA + C(I)
B(I) = tB
ENDDO

One fewer load for each iteration
for reference to B which had a
loop carried true dependence
spanning 1 iteration

Also one fewer load per iteration
for reference to A

Scalar Replacement

* Example: Scalar Replacement in tl = B(0)
case of loop carried dependence £2 = B(1)
spanning multiple iterations

DO I =1, N

£3 = B(I+1)

DOI =1, N
A(I) = tl1 + t3

A(I) = B(I-1) + B(I+1) £1 = t2
ENDDO t2 = t3
ENDDO

* One fewer load for each iteration
for reference to B which had a Ioog
carried input dependence spanning
Iferations

* Invariants maintained were
t1=B(I-1);t2=B(I);t3=B(I+1)

27

Eliminate Scalar Copies

tl = B(0)
tl = B(0)
t2 = B(1)
t2 = B(1) mN3 = MOD(N, 3)
DOI =1, N DO I = 1, mN3
t3 = B(I+1) Preloop :?1) 2(11::11 t3
A(I) = t1 + t3 tl = t2
£1 = t2 t2 = t3
ENDDO
t2 = t3 DO I =mN3 + 1, N, 3
ENDDO Main Loop t3 = B(I+1)
A(I) = tl1 + t3
tl = B(I+2)
* Unnecessary register-register A(I+1) = t2 + tl
copies t2 = B(I+3)
* Unroll loop 3 times A(I+2) = t3 + t2

ENDDO

28

