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Control Dependences (Recap)

Chapter 7 
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IF Conversion: Forward Branches
•  Remove forward branches by inserting appropriate guards 

DO 100 I = 1,N 

C1    IF (A(I).GT.10) GO TO 60 

20    A(I) = A(I) + 10 

C2     IF (B(I).GT.10) GO TO 80 

40    B(I) = B(I) + 10 

60    A(I) = B(I) + A(I) 

80     B(I) = A(I) - 5 

   ENDDO 

è 
    DO 100 I = 1,N 
       m1 = A(I).GT.10 
20     IF(.NOT.m1) A(I) = A(I) + 10 

    IF(.NOT.m1) m2 = B(I).GT.10 
40     IF(.NOT.m1.AND..NOT.m2) B(I) = B(I) + 10 
60     IF(.NOT.m1.AND..NOT.m2.OR.m1)A(I) = B(I) + A(I) 
80     IF(.NOT.m1.AND..NOT.m2.OR.m1.OR..NOT.m1 

  .AND.m2) B(I) = A(I) - 5 
     ENDDO 
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IF Conversion: Forward Branches
•  We can simplify to: 

  DO 100 I = 1,N 

     m1 = A(I).GT.10 

20    IF(.NOT.m1) A(I) = A(I) + 10 

    IF(.NOT.m1) m2 = B(I).GT.10 

40    IF(.NOT.m1.AND..NOT.m2)  

   B(I) = B(I) + 10 

60    IF(m1.OR..NOT.m2) 

   A(I) = B(I) + A(I) 

80    B(I) = A(I) - 5 

 ENDDO 

•  and then vectorize to: 
    m1(1:N) = A(1:N).GT.10 

20  WHERE(.NOT.m1(1:N)) A(1:N) = A(1:N) + 10 

   WHERE(.NOT.m1(1:N)) m2(1:N) = B(1:N).GT.10 

40   WHERE(.NOT.m1(1:N).AND..NOT.m2(1:N))  

   B(1:N) = B(1:N) + 10 

60   WHERE(m1(1:N).OR..NOT.m2(1:N)) 

   A(1:N) = B(1:N) + A(1:N) 

80   B(1:N) = A(1:N) - 5 

4 
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Control Dependence: Definition
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Example: Acyclic CFG and its  
Control Dependence Graph (CDG)
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Control Dependence and Parallelization
•  From Chapter 2: Most loop transformations are unaffected by 

loop-independent dependences 
— A forward-branch need not inhibit coarse-grain parallelization 

•  Iteration-reordering transformations like loop reversal, loop 
skewing, strip mining, index-set splitting, loop interchange do 
not affect loop-independent dependences 

•  Statement reordering transformations might be problematic: 
loop fusion, loop distribution 
— Distribution can be performed by including control dependences in 

recurrence analysis, and performing scalar expansion on branch 
condition 

— Fusion of loops that do not contain exit branches is also possible 

7 
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Loop Distribution
•  Example:                     Control Dependence Graph 

       for loop body 
   

DO I = 1, N 

1     IF (A(I).NE.0) THEN 

2       IF (B(I)/A(I).GT.1) GOTO 4 

     ENDIF 

3     A(I) = B(I) 

      GOTO 8 

4     IF (A(I).GT.T) THEN 

5       T = (B(I) - A(I)) + T 

      ELSE 

6       T = (T + B(I)) – A(I) 

7       B(I) = A(I) 

     ENDIF 

8     C(I) = B(I) + C(I) 

   ENDDO 

START 
t t 
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Loop Distribution
•  Fusion into "like" regions 

— Loop 1 is parallel 
— Loop 2 is sequential 
— Loop 3 is parallel 

DO I = 1, N 

1     IF (A(I).NE.0) THEN 

2       IF (B(I)/A(I).GT.1) GOTO 4 

     ENDIF 

3     A(I) = B(I) 

      GOTO 8 

4     IF (A(I).GT.T) THEN 

5       T = (B(I) - A(I)) + T 

      ELSE 

6       T = (T + B(I)) – A(I) 

7       B(I) = A(I) 

     ENDIF 

8     C(I) = B(I) + C(I) 

   ENDDO 

 Selective IF Conversion: Need execution 
variables E2(I) and E4(I)  to hold result 
of branches at statement 2 and 4 
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Conclusion
•  Idea behind control flow dependences 
•  If-conversion 

— Types of branches and branch removal 
— Iterative dependences (append range to each statement)  

•  Control Dependence Procedure as alternative to if-conversion 
•  Execution model for control dependence graphs 

•  Loop Distribution (selective if-conversion) 
•  Code Generation 
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! ex.2
DO J2 = 1, N+M-1
  ILW = MAX(1,J2-M+1)
  IUP = MIN(N,J2)
  PARALLEL DO I = ILW, IUP
    J = J2 - I + 1
    A(J,I) = A(J-1,I) + A(J,I-1)
  END DO
END DO

d1 = (1, 0)!
d2 = (1, 1)!I

J2

Performance Issues with Wavefront Transformation!
•  Large synchronization overhead!

•  Need barrier for each outer-iteration (J2 loop)!

•  Performance issues!
•  Non-uniform iteration lengths in DOALL loop!
•  Non-contiguous data access after skewing (in sequential version 

or when DOALL loop is chunked)!



Doacross Parallelization!
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! ex.2
DOACROSS I = 1, N
  DO J = 1, M
    IF (I.GE.2) WAIT(I-1,J)
    A(J,I) = A(J-1,I) + A(J,I-1)
    POST(I,J)
  END DO
END DO

J

I

d1 = (0, 1)!
d2 = (1, 0)!

p0! p1! p2! p3!

d1 = (0, 1)!
d2 = (1, 0)

•  Loop-carried dependences exist among iterations!
•  Parallel execution can be enabled via point-to-point 

synchronization among iterations of DOACROSS loop!
•  Synchronizations are expressed using POST and WAIT!



Implementing POST and WAIT operations!
Two approaches:!

1.  Use event variables (Section 6.6.2 of textbook)
•  Allocate an array of event variables, one per iteration!
•  Perform POST and WAIT operations on event variables, e.g., POST (EV(I, J)) 

and WAIT (EV(I-1, J))!
•  Pros: straightforward implementation approach!
•  Cons: inefficient in space, not adaptable to available hardware parallelism!

2.  Special runtime support for post/wait (OpenMP 4.1)
•  Each processor maintains only n integer synchronization variables, where n is 

the number of loops in a doacross loop nest!
•  Dependent iteration examines source iteration’s sync variables to check ready 

condition!
•  Pros: space-efficient (only n*P sync variables for P processors)!
•  Cons: need runtime support in addition to compiler transformation!
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Extension with 2x unroll/tiling!

DO I = 2, N-1
    DO J = 2, N-1
        A(I, J) = .25 * (A(I-1, J) + A(I, J-1) + 
                         A(I+1, J) + A(I, J+1))
    ENDDO
ENDDO
==>
POST (EV(1, 1))
DOACROSS I = 2, N-1
    K = 0
    DO J = 2, N-1, 2   ! TILE SIZE = 2
        K = K+1
        WAIT (EV(I-1,K))
        DO m = J, MIN(J+1, N-1)
            A(I, m) = .25 * (A(I-1, m) + A(I, m-1) + 
                             A(I+1, m) + A(I, m+1))
        ENDDO
        POST (EV(I, K+1))
    ENDDO
ENDDO 14!



Extension with 2x unroll/tiling (contd)!

. . .!

. . .!

. . .!

. . .! 15!



Doacross Support in OpenMP 4.1!
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•  ordered(n) :  n specifies nest-level of doacross!
•  depend(sink: vect) :  wait for iteration vect to reach source
•  depend(source) :  notify that current iteration reached!
•  C code example!

! ex.5b !
#pragma omp for ordered(2)
for (i = 1; i < n; i++) {
  for (j = 1; j < m; j++) {
    A[i][j] = foo(i, j);        // S1
    #pragma omp ordered depend(sink: i-1,j) \\
                        depend(sink: i,j-1)
    B[i][j] = bar(A[i][j],
                  B[i-1][j],
                  B[i][j-1]);   // S2
    #pragma omp ordered depend(source)
    C[i][j] = baz(B[i][j]);     // S3
}

J

I



Compiler Improvement of Register 
Usage
Chapter 8 
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Overview
•  Improving memory hierarchy performance by compiler 

transformations 
— Scalar Replacement 
— Unroll-and-Jam 

•  Saving memory loads & stores  
•  Make good use of the processor registers 
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Motivating Example
DO I = 1, N

DO J = 1, M

A(I) = A(I) + B(J,I)

ENDDO

ENDDO

•  A(I) can be left in a register 
throughout the inner loop 

•  Standard register allocation fails 
to recognize this 

DO I = 1, N

T = A(I)

DO J = 1, M

T = T + B(J,I)

ENDDO

A(I) = T

ENDDO

•  All loads and stores to A in the 
inner loop have been saved 

•  High chance of T being allocated a 
register by standard register 
allocation 
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Scalar Replacement
•  Convert array reference to scalar reference to improve 

performance of the register allocator 

•  Our approach is to use dependences to achieve these memory 
hierarchy transformations 

20 



Dependence and  Memory Hierarchy
•  True or Flow dependence - save loads and cache misses 
•  Anti dependence - save cache misses 

•  Output dependence - save stores and cache misses 
•  Input “dependence” - save loads and cache misses 

— Read-read control flow path with no intervening write 

    A(I) = ... + B(I) 

    ...  = A(I) + k 
    A(I) = ... 

    ...  = B(I) 

21 



Dependence and Memory Hierarchy
•  Loop Carried dependences - Consistent dependences most useful 

for memory management purposes 

•  Consistent dependences - dependences with constant threshold 
(dependence distance) 

22 



Dependence and  Memory Hierarchy
•  Problem of overcounting optimization opportunities. For example 

  

   S1: A(I) = ...  
   S2: ...  = A(I)  

   S3: ...  = A(I) 

•  But we can save only two memory references not three 
•  Solution - Prune edges from dependence graph which don’t 

correspond to savings in memory accesses 
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•  In the reduction example 

DO I = 1, N

DO J = 1, M

A(I) = A(I) + B(J)

ENDDO

ENDDO

Using Dependences
DO I = 1, N

T = A(I)

DO J = 1, M

T = T + B(J)

ENDDO

A(I) = T

ENDDO

•  True dependence - replace the 
references to A in the inner loop by 
scalar T 

•  Output dependence - store can be 
moved outside the inner loop 

•  Anti dependence - load can be moved 
before the inner loop 
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Scalar Replacement
•  Example: Scalar Replacement in 

case of loop independent 
dependence 

 

DO I = 1, N

A(I) = B(I) + C

X(I) = A(I)*Q

ENDDO

DO I = 1, N

t = B(I) + C

A(I) = t

X(I) = t*Q

ENDDO

•  One fewer load for each iteration 
for reference to A 
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Scalar Replacement
•  Example: Scalar Replacement in 

case of loop carried dependence 
spanning single iteration 

DO I = 1, N

A(I) = B(I-1)

B(I) = A(I) + C(I)

ENDDO

tB = B(0)

DO I = 1, N

tA = tB

A(I) = tA

tB = tA + C(I)

B(I) = tB

ENDDO

•  One fewer load for each iteration 
for reference to B which had a 
loop carried true dependence 
spanning 1 iteration 

•  Also one fewer load per iteration 
for reference to A 

26 
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Scalar Replacement
•  Example: Scalar Replacement in 

case of loop carried dependence 
spanning multiple iterations 

 

DO I = 1, N

A(I) = B(I-1) + B(I+1)

ENDDO

t1 = B(0)

t2 = B(1)

DO I = 1, N

t3 = B(I+1)

A(I) = t1 + t3

t1 = t2

t2 = t3

ENDDO

•  One fewer load for each iteration 
for reference to B which had a loop 
carried input dependence spanning 2 
iterations 

•  Invariants maintained were 
   t1=B(I-1);t2=B(I);t3=B(I+1)
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Preloop 

Main Loop 

Eliminate Scalar Copies
t1 = B(0)

t2 = B(1)

DO I = 1, N

t3 = B(I+1)

A(I) = t1 + t3

t1 = t2

t2 = t3

ENDDO

•  Unnecessary register-register 
copies 

•  Unroll loop 3 times 

t1 = B(0)

t2 = B(1)

mN3 = MOD(N,3)

DO I = 1, mN3

t3 = B(I+1)

A(I) = t1 + t3

t1 = t2

t2 = t3

ENDDO

DO I = mN3 + 1, N, 3

t3 = B(I+1)

A(I) = t1 + t3

t1 = B(I+2)

A(I+1) = t2 + t1

t2 = B(I+3)

A(I+2) = t3 + t2

ENDDO


