
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 15 29 October 2015

2

Control Dependences (Recap)

Chapter 7

3

IF Conversion: Forward Branches
•  Remove forward branches by inserting appropriate guards

DO 100 I = 1,N

C1 IF (A(I).GT.10) GO TO 60

20 A(I) = A(I) + 10

C2 IF (B(I).GT.10) GO TO 80

40 B(I) = B(I) + 10

60 A(I) = B(I) + A(I)

80 B(I) = A(I) - 5

 ENDDO

è
 DO 100 I = 1,N
 m1 = A(I).GT.10
20 IF(.NOT.m1) A(I) = A(I) + 10

 IF(.NOT.m1) m2 = B(I).GT.10
40 IF(.NOT.m1.AND..NOT.m2) B(I) = B(I) + 10
60 IF(.NOT.m1.AND..NOT.m2.OR.m1)A(I) = B(I) + A(I)
80 IF(.NOT.m1.AND..NOT.m2.OR.m1.OR..NOT.m1

 .AND.m2) B(I) = A(I) - 5
 ENDDO

4

IF Conversion: Forward Branches
•  We can simplify to:

 DO 100 I = 1,N

 m1 = A(I).GT.10

20 IF(.NOT.m1) A(I) = A(I) + 10

 IF(.NOT.m1) m2 = B(I).GT.10

40 IF(.NOT.m1.AND..NOT.m2)

 B(I) = B(I) + 10

60 IF(m1.OR..NOT.m2)

 A(I) = B(I) + A(I)

80 B(I) = A(I) - 5

 ENDDO

•  and then vectorize to:
 m1(1:N) = A(1:N).GT.10

20 WHERE(.NOT.m1(1:N)) A(1:N) = A(1:N) + 10

 WHERE(.NOT.m1(1:N)) m2(1:N) = B(1:N).GT.10

40 WHERE(.NOT.m1(1:N).AND..NOT.m2(1:N))

 B(1:N) = B(1:N) + 10

60 WHERE(m1(1:N).OR..NOT.m2(1:N))

 A(1:N) = B(1:N) + A(1:N)

80 B(1:N) = A(1:N) - 5

4

5

Control Dependence: Definition

6

Example: Acyclic CFG and its  
Control Dependence Graph (CDG)

7

Control Dependence and Parallelization
•  From Chapter 2: Most loop transformations are unaffected by

loop-independent dependences
— A forward-branch need not inhibit coarse-grain parallelization

•  Iteration-reordering transformations like loop reversal, loop
skewing, strip mining, index-set splitting, loop interchange do
not affect loop-independent dependences

•  Statement reordering transformations might be problematic:
loop fusion, loop distribution
— Distribution can be performed by including control dependences in

recurrence analysis, and performing scalar expansion on branch
condition

— Fusion of loops that do not contain exit branches is also possible

7

8

Loop Distribution
•  Example: Control Dependence Graph

 for loop body

DO I = 1, N

1 IF (A(I).NE.0) THEN

2 IF (B(I)/A(I).GT.1) GOTO 4

 ENDIF

3 A(I) = B(I)

 GOTO 8

4 IF (A(I).GT.T) THEN

5 T = (B(I) - A(I)) + T

 ELSE

6 T = (T + B(I)) – A(I)

7 B(I) = A(I)

 ENDIF

8 C(I) = B(I) + C(I)

 ENDDO

START
t t

8

9

Loop Distribution
•  Fusion into "like" regions

— Loop 1 is parallel
— Loop 2 is sequential
— Loop 3 is parallel

DO I = 1, N

1 IF (A(I).NE.0) THEN

2 IF (B(I)/A(I).GT.1) GOTO 4

 ENDIF

3 A(I) = B(I)

 GOTO 8

4 IF (A(I).GT.T) THEN

5 T = (B(I) - A(I)) + T

 ELSE

6 T = (T + B(I)) – A(I)

7 B(I) = A(I)

 ENDIF

8 C(I) = B(I) + C(I)

 ENDDO

 Selective IF Conversion: Need execution
variables E2(I) and E4(I) to hold result
of branches at statement 2 and 4

9

10

Conclusion
•  Idea behind control flow dependences
•  If-conversion

— Types of branches and branch removal
— Iterative dependences (append range to each statement)

•  Control Dependence Procedure as alternative to if-conversion
•  Execution model for control dependence graphs

•  Loop Distribution (selective if-conversion)
•  Code Generation

11!

! ex.2
DO J2 = 1, N+M-1
 ILW = MAX(1,J2-M+1)
 IUP = MIN(N,J2)
 PARALLEL DO I = ILW, IUP
 J = J2 - I + 1
 A(J,I) = A(J-1,I) + A(J,I-1)
 END DO
END DO

d1 = (1, 0)!
d2 = (1, 1)!I

J2

Performance Issues with Wavefront Transformation!
•  Large synchronization overhead!

•  Need barrier for each outer-iteration (J2 loop)!

•  Performance issues!
•  Non-uniform iteration lengths in DOALL loop!
•  Non-contiguous data access after skewing (in sequential version

or when DOALL loop is chunked)!

Doacross Parallelization!

12!

! ex.2
DOACROSS I = 1, N
 DO J = 1, M
 IF (I.GE.2) WAIT(I-1,J)
 A(J,I) = A(J-1,I) + A(J,I-1)
 POST(I,J)
 END DO
END DO

J

I

d1 = (0, 1)!
d2 = (1, 0)!

p0! p1! p2! p3!

d1 = (0, 1)!
d2 = (1, 0)

•  Loop-carried dependences exist among iterations!
•  Parallel execution can be enabled via point-to-point

synchronization among iterations of DOACROSS loop!
•  Synchronizations are expressed using POST and WAIT!

Implementing POST and WAIT operations!
Two approaches:!

1.  Use event variables (Section 6.6.2 of textbook)
•  Allocate an array of event variables, one per iteration!
•  Perform POST and WAIT operations on event variables, e.g., POST (EV(I, J))

and WAIT (EV(I-1, J))!
•  Pros: straightforward implementation approach!
•  Cons: inefficient in space, not adaptable to available hardware parallelism!

2.  Special runtime support for post/wait (OpenMP 4.1)
•  Each processor maintains only n integer synchronization variables, where n is

the number of loops in a doacross loop nest!
•  Dependent iteration examines source iteration’s sync variables to check ready

condition!
•  Pros: space-efficient (only n*P sync variables for P processors)!
•  Cons: need runtime support in addition to compiler transformation!

13!

Extension with 2x unroll/tiling!

DO I = 2, N-1
 DO J = 2, N-1
 A(I, J) = .25 * (A(I-1, J) + A(I, J-1) +
 A(I+1, J) + A(I, J+1))
 ENDDO
ENDDO
==>
POST (EV(1, 1))
DOACROSS I = 2, N-1
 K = 0
 DO J = 2, N-1, 2 ! TILE SIZE = 2
 K = K+1
 WAIT (EV(I-1,K))
 DO m = J, MIN(J+1, N-1)
 A(I, m) = .25 * (A(I-1, m) + A(I, m-1) +
 A(I+1, m) + A(I, m+1))
 ENDDO
 POST (EV(I, K+1))
 ENDDO
ENDDO 14!

Extension with 2x unroll/tiling (contd)!

. . .!

. . .!

. . .!

. . .! 15!

Doacross Support in OpenMP 4.1!

16!

•  ordered(n) : n specifies nest-level of doacross!
•  depend(sink: vect) : wait for iteration vect to reach source
•  depend(source) : notify that current iteration reached!
•  C code example!

! ex.5b !
#pragma omp for ordered(2)
for (i = 1; i < n; i++) {
 for (j = 1; j < m; j++) {
 A[i][j] = foo(i, j); // S1
 #pragma omp ordered depend(sink: i-1,j) \\
 depend(sink: i,j-1)
 B[i][j] = bar(A[i][j],
 B[i-1][j],
 B[i][j-1]); // S2
 #pragma omp ordered depend(source)
 C[i][j] = baz(B[i][j]); // S3
}

J

I

Compiler Improvement of Register
Usage
Chapter 8

17

Overview
•  Improving memory hierarchy performance by compiler

transformations
— Scalar Replacement
— Unroll-and-Jam

•  Saving memory loads & stores
•  Make good use of the processor registers

18

Motivating Example
DO I = 1, N

DO J = 1, M

A(I) = A(I) + B(J,I)

ENDDO

ENDDO

•  A(I) can be left in a register
throughout the inner loop

•  Standard register allocation fails
to recognize this

DO I = 1, N

T = A(I)

DO J = 1, M

T = T + B(J,I)

ENDDO

A(I) = T

ENDDO

•  All loads and stores to A in the
inner loop have been saved

•  High chance of T being allocated a
register by standard register
allocation

19

Scalar Replacement
•  Convert array reference to scalar reference to improve

performance of the register allocator

•  Our approach is to use dependences to achieve these memory
hierarchy transformations

20

Dependence and Memory Hierarchy
•  True or Flow dependence - save loads and cache misses
•  Anti dependence - save cache misses

•  Output dependence - save stores and cache misses
•  Input “dependence” - save loads and cache misses

— Read-read control flow path with no intervening write

 A(I) = ... + B(I)

 ... = A(I) + k
 A(I) = ...

 ... = B(I)

21

Dependence and Memory Hierarchy
•  Loop Carried dependences - Consistent dependences most useful

for memory management purposes

•  Consistent dependences - dependences with constant threshold
(dependence distance)

22

Dependence and Memory Hierarchy
•  Problem of overcounting optimization opportunities. For example

 S1: A(I) = ...
 S2: ... = A(I)

 S3: ... = A(I)

•  But we can save only two memory references not three
•  Solution - Prune edges from dependence graph which don’t

correspond to savings in memory accesses

23

•  In the reduction example

DO I = 1, N

DO J = 1, M

A(I) = A(I) + B(J)

ENDDO

ENDDO

Using Dependences
DO I = 1, N

T = A(I)

DO J = 1, M

T = T + B(J)

ENDDO

A(I) = T

ENDDO

•  True dependence - replace the
references to A in the inner loop by
scalar T

•  Output dependence - store can be
moved outside the inner loop

•  Anti dependence - load can be moved
before the inner loop

24

Scalar Replacement
•  Example: Scalar Replacement in

case of loop independent
dependence

DO I = 1, N

A(I) = B(I) + C

X(I) = A(I)*Q

ENDDO

DO I = 1, N

t = B(I) + C

A(I) = t

X(I) = t*Q

ENDDO

•  One fewer load for each iteration
for reference to A

25

Scalar Replacement
•  Example: Scalar Replacement in

case of loop carried dependence
spanning single iteration

DO I = 1, N

A(I) = B(I-1)

B(I) = A(I) + C(I)

ENDDO

tB = B(0)

DO I = 1, N

tA = tB

A(I) = tA

tB = tA + C(I)

B(I) = tB

ENDDO

•  One fewer load for each iteration
for reference to B which had a
loop carried true dependence
spanning 1 iteration

•  Also one fewer load per iteration
for reference to A

26

27

Scalar Replacement
•  Example: Scalar Replacement in

case of loop carried dependence
spanning multiple iterations

DO I = 1, N

A(I) = B(I-1) + B(I+1)

ENDDO

t1 = B(0)

t2 = B(1)

DO I = 1, N

t3 = B(I+1)

A(I) = t1 + t3

t1 = t2

t2 = t3

ENDDO

•  One fewer load for each iteration
for reference to B which had a loop
carried input dependence spanning 2
iterations

•  Invariants maintained were
 t1=B(I-1);t2=B(I);t3=B(I+1)

28

Preloop

Main Loop

Eliminate Scalar Copies
t1 = B(0)

t2 = B(1)

DO I = 1, N

t3 = B(I+1)

A(I) = t1 + t3

t1 = t2

t2 = t3

ENDDO

•  Unnecessary register-register
copies

•  Unroll loop 3 times

t1 = B(0)

t2 = B(1)

mN3 = MOD(N,3)

DO I = 1, mN3

t3 = B(I+1)

A(I) = t1 + t3

t1 = t2

t2 = t3

ENDDO

DO I = mN3 + 1, N, 3

t3 = B(I+1)

A(I) = t1 + t3

t1 = B(I+2)

A(I+1) = t2 + t1

t2 = B(I+3)

A(I+2) = t3 + t2

ENDDO

