COMP 515: Advanced Compilation for Vector and Parallel Processors

Prof. Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

Control Dependences (Recap)

Chapter 7

IF Conversion: Forward Branches

- Remove forward branches by inserting appropriate guards

```
    DO 100 I = 1,N
C
20 A(I) = A(I) + 10
C
40 B(I) = B(I) + 10
60 A(I) = B(I) + A(I)
80 B(I) = A(I) - 5
    ENDDO
#
        DO 100 I = 1,N
        m1 = A(I).GT.10
    20 IF(.NOT.m1) A(I) = A(I) + 10
    IF(.NOT.m1) m2 = B(I).GT.10
    IF(.NOT.m1.AND..NOT.m2) B(I) = B(I) + 10
    60 IF(.NOT.m1.AND..NOT.m2.OR.m1)A(I) = B(I) + A(I)
    80 IF(.NOT.m1.AND..NOT.m2.OR.m1.OR..NOT.m1
    .AND.m2) B(I) = A(I) - 5
    ENDDO
```


IF Conversion: Forward Branches

- We can simplify to:

```
    DO 100 I = 1,N
        m1 = A(I).GT.10
20 IF(.NOT.m1) A(I) = A(I) + 10
        IF(.NOT.m1) m2 = B(I).GT.10
40 IF(.NOT.m1.AND..NOT.m2)
        B(I) = B(I) + 10
60 IF(m1.OR..NOT.m2)
        A(I) = B(I) + A(I)
80 B(I) = A(I) - 5
    ENDDO
```

- and then vectorize to:

```
    m1(1:N) = A(1:N).GT.10
20 WHERE(.NOT.m1(1:N)) A(1:N) = A(1:N) + 10
    WHERE(.NOT.m1(1:N)) m2(1:N) = B(1:N).GT.10
40 WHERE(.NOT.m1(1:N).AND..NOT.m2(1:N))
    B(1:N) = B(1:N) + 10
60 WHERE(m1(1:N).OR..NOT.m2(1:N))
    A(1:N) = B(1:N) + A(1:N)
80 B(1:N) = A(1:N) - 5
```


Control Dependence: Definition

Node Y is control dependent on node X with label L in CFG if and only if

1. there exists a nonnull path $X \longrightarrow Y$, starting with the edge labeled L, such that Y post-dominates every node, W, strictly between X and Y in the path, and
2. Y does not post-dominate X.

Reference: "The Program Dependence Graph and its Use in Optimization", J. Ferrante et al, ACM TOPLAS, 1987

Example: Acyclic CFG and its Control Dependence Graph (CDG)

CONTROL FLOW GRAPH

POSTDOMINATOR TREE

CONTROL DEPENDENCE GRAPH

Control Dependence and Parallelization

- From Chapter 2: Most loop transformations are unaffected by loop-independent dependences
- A forward-branch need not inhibit coarse-grain parallelization
- Iteration-reordering transformations like loop reversal, loop skewing, strip mining, index-set splitting, loop interchange do not affect loop-independent dependences
- Statement reordering transformations might be problematic: loop fusion, loop distribution
-Distribution can be performed by including control dependences in recurrence analysis, and performing scalar expansion on branch condition
-Fusion of loops that do not contain exit branches is also possible

Loop Distribution

- Example:

```
DO I = 1, N
    IF (A(I).NE.O) THEN
        IF (B(I)/A(I).GT.I) GOTO 4
    ENDIF
    A(I) = B(I)
    GOTO 8
    IF (A(I).GT.T) THEN
        T = (B(I) - A(I)) + T
    ELSE
        T = (T + B(I)) - A(I)
        B(I) = A(I)
    ENDIF
8 C(I) = B(I) + C(I)
    ENDDO
```

Control Dependence Graph for loop body

Loop Distribution

- Fusion into "like" regions
- Loop 1 is parallel
- Loop 2 is sequential
-Loop 3 is parallel

```
DO I = 1, N
    1 IF (A(I).NE.O) THEN
    2 IF (B(I)/A(I).GT.I) GOTO 4
    ENDIF
    3 A(I) = B(I)
    GOTO 8
    IF (A(I).GT.T) THEN
        T = (B(I) - A(I)) + T
    ELSE
    T = (T + B(I)) - A(I)
        B(I) = A(I)
```

 ENDIF
 \(C(I)=B(I)+C(I)\)
 ENDDO

Selective IF Conversion: Need execution variables E2(I) and E4(I) to hold result of branches at statement 2 and 4

Conclusion

- Idea behind control flow dependences
- If-conversion
- Types of branches and branch removal
-Iterative dependences (append range to each statement)
- Control Dependence Procedure as alternative to if-conversion
- Execution model for control dependence graphs
- Loop Distribution (selective if-conversion)
- Code Generation

Performance Issues with Wavefront Transformation

- Large synchronization overhead
- Need barrier for each outer-iteration (J2 loop)
- Performance issues
- Non-uniform iteration lengths in DOALL loop
- Non-contiguous data access after skewing (in sequential version or when DOALL loop is chunked)

```
! ex.2
DO J2 = 1, N+M-1
    ILW = MAX(1,J2-M+1)
    IUP = MIN(N,J2)
    PARALLEL DO I = ILW, IUP
        J = J2 - I + 1
        A(J,I) = A(J-1,I) + A(J,I-1)
    END DO
END DO
```


Doacross Parallelization

- Loop-carried dependences exist among iterations
- Parallel execution can be enabled via point-to-point synchronization among iterations of DOACROSS loop
- Synchronizations are expressed using POST and WAIT

```
! ex.2
DOACROSS I = 1,N
    DO J = 1,M
        IF (I.GE.2) WAIT(I-1,J)
        A(J,I) = A(J-1,I) + A(J,I-1)
        POST(I,J)
    END DO
END DO
```


Implementing POST and WAIT operations

Two approaches:

1. Use event variables (Section 6.6.2 of textbook)

- Allocate an array of event variables, one per iteration
- Perform POST and WAIT operations on event variables, e.g., POST (EV(I, J)) and WAIT (EV(I-1, J))
- Pros: straightforward implementation approach
- Cons: inefficient in space, not adaptable to available hardware parallelism

2. Special runtime support for post/wait (OpenMP 4.1)

- Each processor maintains only n integer synchronization variables, where n is the number of loops in a doacross loop nest
- Dependent iteration examines source iteration's sync variables to check ready condition
- Pros: space-efficient (only n*P sync variables for P processors)
- Cons: need runtime support in addition to compiler transformation

Extension with $2 x$ unroll/tiling

```
DO I = 2, N-1
    DO J = 2, N-1
    A(I,J) =.25* (A(I-1,J) +A(I, J-1) +
                                    A(I+1,J) + A(I, J+1))
    ENDDO
ENDDO
==>
POST (EV(1, 1))
DOACROSS I = 2, N-1
    K = 0
    DO J = 2, N-1, 2 ! TILE SIZE = 2
        K = K+1
        WAIT (EV(I-1,K))
        DO m = J, MIN(J+1, N-1)
        A(I,m) = . 25 * (A(I-1,m) + A(I, m-1) +
                                A(I+1,m) + A(I,m+1))
            ENDDO
            POST (EV(I, K+1))
    ENDDO
```

Extension with $2 x$ unroll/tiling (contd)

Doacross Support in OpenMP 4.1

- ordered (n) : n specifies nest-level of doacross
- depend(sink: vect) : wait for iteration vect to reach source
- depend(source): notify that current iteration reached
- C code example

```
! ex.5b
#pragma omp for ordered(2)
for (i = 1; i < n; i++) {
    for (j = 1; j < m; j++) {
        A[i][j] = foo(i, j); // S1
    #pragma omp ordered depend(sink: i-1,j) \\
                        depend(sink: i,j-1)
    B[i][j] = bar(A[i][j],
                B[i-1][j],
                B[i][j-1]); // S2
    #pragma omp ordered depend(source)
    C[i][j] = baz(B[i][j]); // S3
}
```


Compiler Improvement of Register Usage

Chapter 8

Overview

- Improving memory hierarchy performance by compiler transformations
-Scalar Replacement
- Unroll-and-Jam
- Saving memory loads \& stores
- Make good use of the processor registers

Motivating Example

```
DO I = 1, N
    DO J = 1, M
        A(I) = A(I) + B(J,I)
    ENDDO
ENDDO
```

- A(I) can be left in a register throughout the inner loop
- Standard register allocation fails to recognize this

$$
\begin{aligned}
& \text { DO } \mathbf{I}=1, \mathrm{~N} \\
& \mathbf{T}=\mathbf{A}(\mathbf{I}) \\
& \text { DO } \mathrm{J}=1 \text {, } \mathrm{M} \\
& T=T+B(J, I) \\
& \text { ENDDO } \\
& A(I)=T \\
& \text { ENDDO }
\end{aligned}
$$

- All loads and stores to A in the inner loop have been saved
- High chance of T being allocated a register by standard register allocation

Scalar Replacement

- Convert array reference to scalar reference to improve performance of the register allocator
- Our approach is to use dependences to achieve these memory hierarchy transformations

Dependence and Memory Hierarchy

- True or Flow dependence - save loads and cache misses
- Anti dependence - save cache misses
- Output dependence - save stores and cache misses
- Input "dependence" - save loads and cache misses
-Read-read control flow path with no intervening write

$$
\begin{aligned}
& A(I)=\ldots+B(I) \\
& \ldots=A(I)+k \\
& A(I)=\ldots \\
& \ldots=B(I)
\end{aligned}
$$

Dependence and Memory Hierarchy

- Loop Carried dependences - Consistent dependences most useful for memory management purposes
- Consistent dependences - dependences with constant threshold (dependence distance)

Dependence and Memory Hierarchy

- Problem of overcounting optimization opportunities. For example

$$
\begin{aligned}
& S 1: A(I)=\ldots \\
& S 2: \ldots=A(I) \\
& S 3: \ldots=A(I)
\end{aligned}
$$

- But we can save only two memory references not three
- Solution - Prune edges from dependence graph which don't correspond to savings in memory accesses

Using Dependences

- In the reduction example

DO $I=1, N$
DO J = 1, M

ENDDO
ENDDO

$$
\begin{aligned}
& \text { DO } \mathbf{I}=1, \mathrm{~N} \\
& \mathbf{T}=\mathbf{A}(\mathbf{I}) \\
& \text { DO } \mathrm{J}=1 \text {, } \mathrm{M} \\
& T=T+B(J)
\end{aligned}
$$

ENDDO
$A(I)=T$
ENDDO

- True dependence - replace the references to A in the inner loop by scalar T
- Output dependence - store can be moved outside the inner loop
- Anti dependence - load can be moved before the inner loop

Scalar Replacement

- Example: Scalar Replacement in case of loop independent dependence

```
DO \(\mathrm{I}=1\), N
    \(\mathrm{A}(\mathrm{I})=\mathrm{B}(\mathrm{I})+\mathbf{C}\)
    \(X(I)=A(I) * Q\)
ENDDO
```

DO $\mathbf{I}=1$, N

$$
t=B(I)+C
$$

$$
A(I)=t
$$

$$
X(I)=t * Q
$$

ENDDO

- One fewer load for each iteration for reference to A

Scalar Replacement

- Example: Scalar Replacement in case of loop carried dependence spanning single iteration

DO $I=1, N$

$$
\begin{aligned}
& \mathbf{A}(I)=\mathbf{B}(I-1) \\
& \mathbf{B}(I)=\mathbf{A}(I)+\mathbf{C}(I)
\end{aligned}
$$

ENDDO

$$
\begin{array}{rl}
\mathrm{tB} & =\mathrm{B}(0) \\
\mathrm{DO} & I=1, \mathrm{~N} \\
\mathrm{tA}=\mathrm{tB} \\
\mathrm{~A}(I)=\mathrm{tA} \\
\mathrm{tB}=\mathrm{tA}+\mathrm{C}(I) \\
\mathrm{B}(I)=\mathrm{tB}
\end{array}
$$

ENDDO

- One fewer load for each iteration for reference to B which had a loop carried true dependence spanning 1 iteration
- Also one fewer load per iteration for reference to A

Scalar Replacement

- Example: Scalar Replacement in case of loop carried dependence spanning multiple iterations

```
DO I = 1, N
    A(I) = B(I-1) + B(I+1)
```

 ENDDO
 $$
\begin{aligned}
& \mathrm{t} 1=\mathrm{B}(0) \\
& \mathrm{t} 2=\mathrm{B}(1) \\
& \mathrm{DO} \mathrm{I}=1, \mathrm{~N} \\
& \mathrm{t} 3=\mathrm{B}(\mathrm{I}+1) \\
& \mathrm{A}(\mathrm{I})=\mathrm{t} 1+\mathrm{t} 3 \\
& \mathrm{t} 1=\mathrm{t} 2 \\
& \mathrm{t} 2=\mathrm{t} 3
\end{aligned}
$$

ENDDO

- One fewer load for each iteration for reference to B which had a loop carried input dependence spanning 2 iterations
- Invariants maintained were

$$
\mathrm{t} 1=\mathrm{B}(\mathrm{I}-1) ; \mathrm{t} 2=\mathrm{B}(\mathrm{I}) ; \mathrm{t} 3=\mathrm{B}(\mathrm{I}+1)
$$

Eliminate Scalar Copies

```
\(t 1=B(0)\)
\(\mathrm{t} 2=\mathrm{B}(1)\)
DO \(I=1, N\)
\(t 3=B(I+1)\)
\(A(I)=t 1+t 3\)
\(t 1=t 2\)
\(t 2=t 3\)
ENDDO
ENDDO
```

 t1 \(=\mathrm{B}(0)\)
 t2 \(=\mathrm{B}(1)\)
 \(\operatorname{mN} 3=\operatorname{MOD}(N, 3)\)
 DO \(I=1\), mN3
 Preloop
$t 3=B(I+1)$
$A(I)=t 1+t 3$
$\mathrm{t} 1=\mathrm{t} 2$
$t 2=t 3$

ENDDO
DO $I=\operatorname{mN} 3+1, N, 3$

Main Loop

$$
\begin{aligned}
& t 3=B(I+1) \\
& A(I)=t 1+t 3 \\
& t 1=B(I+2) \\
& A(I+1)=t 2+t 1 \\
& t 2=B(I+3) \\
& A(I+2)=t 3+t 2
\end{aligned}
$$

ENDDO

