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Compiler Improvement of Register 
Usage

Chapter 8 (contd)
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Scalar Replacement (Recap)

• Example: Scalar Replacement in 
case of loop carried dependence 
spanning multiple iterations 

 

DO I = 1, N

A(I) = B(I-1) + B(I+1)

ENDDO

t1 = B(0)
t2 = B(1)
DO I = 1, N

t3 = B(I+1)
A(I) = t1 + t3
t1 = t2
t2 = t3

ENDDO

• One fewer load for each iteration 
for reference to B which had a 
loop carried input dependence 
spanning 2 iterations 

• Invariants maintained were 
   t1=B(I-1);t2=B(I);t3=B(I+1)
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Preloop

Main Loop

Eliminate Scalar Copies by unrolling
t1 = B(0)

t2 = B(1)

DO I = 1, N

t3 = B(I+1)

A(I) = t1 + t3

t1 = t2

t2 = t3

ENDDO

• Unnecessary register-register 
copies 

• Unroll loop 3 times

t1 = B(0)
t2 = B(1)
mN3 = MOD(N,3)
DO I = 1, mN3

t3 = B(I+1)
A(I) = t1 + t3
t1 = t2
t2 = t3

ENDDO
DO I = mN3 + 1, N, 3

t3 = B(I+1)
A(I) = t1 + t3
t1 = B(I+2)
A(I+1) = t2 + t1
t2 = B(I+3)
A(I+2) = t3 + t2

ENDDO
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Pruning the dependence graph
• Prune all anti dependence edges 

• Prune flow and input dependence edges that do not represent a 
potential reuse 

• Prune redundant input dependence edges 

• Prune output dependence edges after rest of the pruning is 
done
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Pruning the dependence graph
• Phase 1: Eliminate killed dependences 

— When killed dependence is a flow dependence 

S1: A(I+1) = ... 

S2: A(I)  = ... 

S3: ...  = A(I)
– Store in S2 is a killing store. Flow dependence from S1 to S3 is 

pruned 
— When killed dependence is an input dependence 

S1: ... = A(I+1) 

S2: A(I)  = ... 

S3: ...  = A(I-1)
– Store in S2 is a killing store. Input dependence from S1 to S3 

is pruned
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Pruning the dependence graph
• Phase 2: Identify generators 

DO I = 1, N

A(I+1) = A(I-1) + B(I-1)

A(I) = A(I) + B(I) + B(I+1)

ENDDO

• Any assignment reference with at least one flow dependence 
emanating from it to another statement in the loop 

• Any use reference with at least one input dependence emanating 
from it and no input or flow dependence into it 
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Pruning the dependence graph
• Phase 3: Find name partitions and eliminate input dependences 

—Use Typed Fusion 
– References as vertices 
– An edge joins two references 
– Output and anti- dependences are bad edges 
– Name of array as type 

• Eliminate input dependences between two elements of same 
name partition unless source is a generator
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Scalar Replacement: Putting it together
1. Prune dependence graph; Apply typed fusion 

2. Select a set of name partitions using register pressure 
moderation 

3. For each selected partition 
A) If non-cyclic, replace using set of temporaries 
B) If cyclic replace reference with single temporary 
C) For each inconsistent dependence 

Use index set splitting or insert loads and stores 

4. Unroll loop to eliminate scalar copies
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Unroll-and-Jam
DO I = 1, N*2

DO J = 1, M

A(I) = A(I) + B(J)

ENDDO

ENDDO

• Can we achieve reuse of 
references to B ? 

• Use transformation called 
Unroll-and-Jam

DO I = 1, N*2, 2
DO J = 1, M

A(I) = A(I) + B(J)
A(I+1) = A(I+1) + B(J)

ENDDO
ENDDO

• Unroll outer loop twice and then 
fuse the copies of the inner loop 

• Brought two uses of B(J) 
together
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Unroll-and-Jam
DO I = 1, N*2, 2

DO J = 1, M

A(I) = A(I) + B(J)

A(I+1) = A(I+1) + B(J)

ENDDO

ENDDO

• Apply scalar replacement on this 
code

DO I = 1, N*2, 2
s0 = A(I)
s1 = A(I+1)
DO J = 1, M

t = B(J)
s0 = s0 + t
s1 = s1 + t

ENDDO
A(I) = s0
A(I+1) = s1

ENDDO

• Half the number of loads as the 
original program
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Legality of Unroll-and-Jam
• Is unroll-and-jam always legal? 

DO I = 1, N*2

DO J = 1, M

    A(I+1,J-1) = A(I,J) + B(I,J)

ENDDO

ENDDO

• Apply unroll-and-jam

DO I = 1, N*2, 2
DO J = 1, M

A(I+1,J-1) = A(I,J) + B(I,J)
A(I+2,J-1) = A(I+1,J) + B(I+1,J)

 ENDDO
ENDDO

• This is wrong!!!
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Legality of Unroll-and-Jam
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Legality of Unroll-and-Jam
• Direction vector in this example was (<,>) 

—This makes loop interchange illegal 
—Unroll-and-Jam is loop interchange followed by unrolling inner loop 

followed by another loop interchange 

• But does loop interchange illegal imply unroll-and-jam illegal ? 
NO
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Legality of Unroll-and-Jam
• Consider this example 

DO I = 1, N*2

DO J = 1, M

  A(I+2,J-1) = A(I,J) + B(I,J)

 ENDDO

ENDDO

• Direction vector is (<,>); still 
unroll-and-jam possible because 
of distances involved
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Conditions for legality of unroll-and-jam
• Definition: Unroll-and-jam to factor n consists of unrolling the 

outer loop n-1 times and fusing those copies together. 

• Theorem: An unroll-and-jam to a factor of n is legal iff there 
exists no dependence with direction vector (<,>) such that the 
distance for the outer loop is less than n.
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Unroll-and-jam Algorithm
1. Create preloop 

2. Unroll main loop m(the unroll-and-jam factor) times 

3. Apply typed fusion to loops within the body of the unrolled loop 

4. Apply unroll-and-jam recursively to the inner nested loop 
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Unroll-and-jam example
DO I = 1, N

 DO K = 1, N

  A(I) = A(I) + X(I,K)

 ENDDO

 DO J = 1, M

DO K = 1, N

  B(J,K) = B(J,K) + A(I)

 ENDDO

 ENDDO

 DO J = 1, M

  C(J,I) = B(J,N)/A(I)

 ENDDO

ENDDO

DO I = mN2+1, N, 2
 DO K = 1, N
  A(I) = A(I) + X(I,K)
  A(I+1) = A(I+1) + X(I+1,K)
 ENDDO
 DO J = 1, M

DO K = 1, N
    B(J,K) = B(J,K) + A(I)

  B(J,K) = B(J,K) + A(I+1)
 ENDDO
 C(J,I) = B(J,N)/A(I)
  C(J,I+1) = B(J,N)/A(I+1)
 ENDDO
ENDDO
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Conclusion
• We have learned two memory hierarchy transformations: 

—scalar replacement  
—unroll-and-jam 

• They reduce the number of memory accesses by maximum use 
of processor registers
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Homework #4 (Written Assignment)
Solve exercise 8.2 in book 

• Hand-transform the following loop nest to achieve high register 
reuse.  What transformations did you use?  What is the ratio of 
floating-point operations to loads before and after the 
transformation?  How many registers did you assume i.e., how 
many registers do you need? 
DO I = 1, N 

DO J = 1, N 
A(I+1,J+1) = A(I,J+1) + A(I+1,J) + B(J) 

END DO 
END DO 

• Due by 5pm on Tuesday, Nov 24th   

• Homework should be submitted in class or to Annepha 
Pemberton, Duncan Hall 3080
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Inter-iteration Scalar Replacement Using Array SSA
Form

Rishi Surendran1 Rajkishore Barik2 Jisheng Zhao1 Vivek Sarkar1

1Rice University

2Intel Labs
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INTER-ITERATION SCALAR REPLACEMENT EXAMPLE

Original Loop After Scalar Replacement

1: for i = 1 to n do
2: B[i] = 0.3333⇤(A[i�1]+A[i]+A[i+1])
3: end for

1: t0 = A[0]
2: t1 = A[1]
3: for i = 1 to n do
4: t2 = A[i + 1]
5: B[i] = 0.3333 ⇤ (t0 + t1 + t2)
6: t0 = t1

7: t1 = t2

8: end for

• Jacobi-1D kernel from Polybench/C benchmark suite

• The value accessed by the expression A[i + 1] in iteration k is again accessed by
expression A[i] in iteration k + 1

A[i + 1] is the generator for A[i]
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CURRENT APPROACHES FOR SCALAR REPLACEMENT

• Scalar replacement using non-SSA representations
David Callahan et.al. [PLDI 1990]

I Does not handle control flow
I Requires precise dependence information

Steve Carr, Ken Kennedy [SPE 1994]
I Complex: includes 14 different steps such as availability analysis,

reachability analysis and anticipability analysis
I Requires precise dependence information

• Scalar replacement using array SSA form
Stephen Fink et.al. [SAS 2000]

I Does not require dependence information
I Does not handle inter-iteration reuse

Goal: Inter-iteration scalar replacement using array SSA form
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INTER-ITERATION SCALAR REPLACEMENT STEPS

• Extended array SSA form construction
• Subscript analysis

Available subscript analysis for redundant load elimination
Dead subscript analysis for dead store elimination

• Transformations
Elimination of loads/store
Prolog/epilog code generation
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ARRAY SSA FORM AND EXTENSIONS

• Program representation capturing precise element-level data flow
information for array variables

• Every use and definition has a unique name
• Four different types of � functions

Control �
I Same semantics as scalar SSA phi function

Definition � (d�)
I Inserted immediately after a definition
I Kathleen Knobe, Vivek Sarkar [POPL 98]

Use � (u�)
I Inserted immediately after a use
I Stephen Fink et.al. [SAS 2000]
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MOTIVATING EXAMPLE

Original Loop After Scalar Replacement

/* 5 loads and 2 stores/iteration */
1: for i = 1 to n do
2: A[i + 1] = A[i � 1] + B[i � 1]
3: A[i] = A[i] + B[i] + B[i + 1]
4: end for

/* 1 load and 1 store/iteration */
1: tA

i�1 = A[0]
2: tA

i

= A[1]
3: tB

i�1 = B[0]
4: tB

i

= B[1]
5: for i = 1 to n do
6: tA

i+1 = tA

i�1 + tB

i�1

7: tB

i+1 = B[i + 1]
8: tA

i

= tA

i

+ tB

i

+ tB

i+1

9: A[i] = tA

i

10: tA

i�1 = tA

i

11: tA

i

= tA

i+1

12: tB

i�1 = tB

i

13: tB

i

= tB

i+1

14: end for
15: A[n + 1] = tA

i+1

Optimizing Compilers for Modern Architectures, Page 387 7 / 16



STEP 1: EXTENDED ARRAY SSA FORM
Three Address Code Extended Array SSA form

1: for i = 1 to n do
2: t1 = A[i � 1]
3: t2 = B[i � 1]
4: t3 = t1 + t2
5: A[i + 1] = t3
6: t4 = A[i]
7: t5 = B[i]
8: t6 = B[i + 1]
9: t7 = t4 + t5

10: t8 = t7 + t6
11: A[i] = t8
12: end for

1: A0 = ...
2: B0 = ...
3: for i = 1 to n do
4: A1 = h�(A0,A9)
5: B1 = h�(B0,B7)
6: t1 = A2[i � 1]
7: A3 = u�(A2,A1)
8: t2 = B2[i � 1]
9: B3 = u�(B2,B1)

10: t3 = t1 + t2
11: A4[i + 1] = t3
12: A5 = d�(A4,A3)
13: t4 = A6[i]
14: A7 = u�(A6,A5)
15: t5 = B4[i]
16: B5 = u�(B4,B3)
17: t6 = B6[i + 1]
18: B7 = u�(B6,B5)
19: t7 = t4 + t5
20: t8 = t7 + t6
21: A8[i] = t8
22: A9 = d�(A8,A7)
23: end for 8 / 16



STEP 2: AVAILABLE SUBSCRIPT ANALYSIS

Computes the set of array elements available at each of the �-functions (�,
u�, d�, h�)

• Available elements: Elements that are read/written in the current or
previous ⌧ iterations

⌧ is a tuning parameter
• Computes a lattice value for each of the �-functions
L(A

j

) = {(i1, d1), (i2, d2), ...}
Each ordered pair, (i

k

, d

k

) represents an available array subscript, i

k

and
the iteration distance from the generator, d

k

I
i

k

is a spatial dimension
I

d

k

is a temporal dimension
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DATA FLOW EQUATIONS FOR AVAILABLE SUBSCRIPT
ANALYSIS

SSA Node Data Flow Equation
A

r

= �(A
p

,A

q

) L(A
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) = JOIN(L(A
p

),L(A
q

))
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r
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p
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q
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p

))
A

r
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p
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q
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Definitely Same and Definitely Different Analyses

Given two expressions a and b

• DS(a, b) = true, if a and b are guaranteed to have the same value

• DD(a, b) = true, if a and b are guaranteed to have different values
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JOIN: Finds the intersection of 2 sets
• JOIN(A,B)) = {(i1, d)|(i1, d1) 2 A and 9 (i01, d

0
1) 2 B and DS(i1, i

0
1) =

true and d = max(d1, d

0
1)}
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SHIFT: Shifts all the elements by one iteration.
• SHIFT({(i1, d1), (i2, d2), . . .}) = {(i1 � step1, d1 + 1),

(i2 � step2, d2 + 1), . . .}
step1, step2, .. are the coefficients of the induction variable
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STEP 3: REDUNDANT LOAD ELIMINATION

• Identifying redundant loads
A load, A

i

[x] is redundant if x is available along the
incoming definition

I
A

k

= u�(A
i

,A

j

)
I 9 (y, d) 2 L(A

j

), d is the reuse distance
I DS(x, y) = true

• Transformation
Replace load A

i

[x] with a scalar temporary read tA

x

Insert initialization of scalar temporaries in loop
preheader
Insert statement tA

x

:= tA

x+step

at the end of loop body
I Number of copy statements = reuse distance

Ak Ak =uϕ(Ai,Aj)

= Ai[x]

Aj

DS(x,y) = true

L(Aj) = {…,(y,d),…}
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LOOP AFTER LOAD ELIMINATION

Original Loop After Load Elimination

1: for i = 1 to n do
2: A[i + 1] = A[i � 1] + B[i � 1]
3: A[i] = A[i] + B[i] + B[i + 1]
4: end for

1: tA

i�1 = A[0]
2: tA

i

= A[1]
3: tB

i�1 = B[0]
4: tB

i

= B[1]
5: for i = 1 to n do
6: tA

i+1 = tA

i�1 + tB

i�1

7: A[i + 1] = tA

i+1

8: tB

i+1 = B[i + 1]
9: tA

i

= tA

i

+ tB

i

+ tB

i+1

10: A[i] = tA

i

11: tA

i�1 = tA

i

12: tA

i

= tA

i+1

13: tB

i�1 = tB

i

14: tB

i

= tB

i+1

15: end for
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EXPERIMENTAL SETUP

• Implemented in LLVM 3.2
Scalar evolution is used to perform subscript analysis
Basic alias analysis
Subscript analysis is run for 5 iterations (⌧ = 5)

• 32-core 3.55 GHz IBM Power7
256 GB memory
SUSE Linux

• Stencil based benchmarks (sequential)
Jacobi variants, Rician Denoising
Unroll-and-jam by 4 on Jacobi 2D 5-point
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REDUCTION IN NUMBER OF LOADS

O3 : LLVM -O3

O3SR : LLVM -O3 with scalar replacement

4.6 - 37.8% reduction in number of loads with scalar replacement
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SPEEDUP

Speedup up to 2.29⇥ compared to LLVM -O3
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SUMMARY

• Extensions to array SSA form for inter-iteration reuse analysis
• Subscript analysis for identifying redundant loads and dead stores
• Transformation algorithms for redundant load elimination and dead store

elimination
• Performance improvement up to 2.29⇥ compared to LLVM -O3
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