
1

COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 17 5 November, 2015

2

Managing Cache

Allen and Kennedy, Chapter 9

3

Introduction
•  Register

— One word per register (typically, but there may be exceptions e.g.,
SIMD registers)

— Temporal reuse
— Direct store
— Eviction (spills) managed by software

•  Cache
— Multiple words in a cache line, multiple lines in an associative set,

multiple sets in a cache
— Temporal and Spatial reuse
— Load before store
— Eviction managed by hardware (software can also help)

3

4

Spatial Reuse
•  Permits high reuse when accessing closely located data
•  DO I = 1, M

 DO J = 1, N
 A(I, J) = A(I, J) + B(I, J)

 ENDDO

 ENDDO
 No reuse/locality for Fortran’s column-major layout

5

Spatial Reuse (after loop interchange)
•  DO J = 1, N
 DO I = 1, M

 A(I, J) = A(I, J) + B(I, J)
 ENDDO

 ENDDO

 Iterates over columns instead

6

Temporal Reuse
•  Reuse limited by cache size, LRU replacement strategy
•  DO I = 1, M

 DO J = 1, N
 A(I) = A(I) + B(J)

 ENDDO

 ENDDO

7

Temporal Reuse
•  Strip mining + Interchange (or Tiling) can improve

temporal reuse when tile size S is chosen so that
inner loops can fit in cache

•  DO J = 1, N, S
 DO I = 1, M

 DO jj = J, MIN(N, J+S-1)

 A(I) = A(I) + B(jj)
 ENDDO

 ENDDO
 ENDDO

7

8

Loop Interchange
•  Which loop should be innermost ?
•  Strives to reduce distances between memory accesses to

increase locality
•  Attaches cost function to the loop and computes for best loop

ordering

9

Cost Assignment
•  Consider cost analysis for an innermost loop with N iterations,

for arrays with element size = S bytes, and a cache with line
size = L bytes

•  Cost is 1 for references that do not depend on loop induction
variables

•  Cost is N for references based on induction variables over a
non-contiguous space

•  Cost is N*S/L for induction variables based references over
contiguous space

10

Loop Reordering
•  Once the cost is established, reorder the loop from cheapest

innermost loop to high cost outermost loop

11

Loop Blocking (Tiling)
•  DO J = 1, M
 DO I = 1, N

 D(I) = D(I) + B(I,J)
 ENDDO

 ENDDO

NM/b misses for each of arrays B and D

==> total of 2NM/b misses
b = block (line) size in words (elements)

Assume that N is large enough for elements of D to overflow cache

11

12

Blocking loop I
•  After strip-mine-and-interchange
 DO II = 1, N, S

 DO J = 1, M
 DO I = II, MIN(II+S-1, N)

 D(I) = D(I) + B(I,J)

 ENDDO
 ENDDO

 ENDDO
NM/b + N/b = (1 + 1/M) NM / b misses

 Assume that S is >= b and is also small enough to allow S elements
of D to be held in cache for all iterations of the J loop

12

13

Blocking Loop J
•  DO J = 1, M, T
 DO I = 1, N

 DO jj = J, MIN(J+T-1, M)
 D(I) = D(I) + B(I, jj)

 ENDDO

 ENDDO
 ENDDO

NM/b misses for array B (if T is small enough)
(N/b)*(M/T) misses for array D

==> Total of (1 + 1/T) NM/b misses

14

Legality of Blocking
•  Strip mining is always legal
•  Loop interchange is not always legal

procedure StripMineAndInterchange (L, m, k, o, S)
 // L = {L1, L2, ..., Lm}is the loop nest to be transformed
 // Lk is the loop to be strip mined
 // Lo is the outer loop which is to be just inside the by-strip loop
 // after interchange
 // S is the variable to use as strip size; it’s value must be positive
 let the header of Lk be
 DO I = L, N, D;
 split the loop into two loops, a by-strip loop:
 DO I = L, N, S*D
 and a within-strip loop:
 DO i = I, MAX(I+S*D-D,N), D
 around the loop body;
 interchange the by-strip loop to the position just outside of Lo;

end StripMineAndInterchange

15

Legality of Blocking
•  Every direction vector for a dependence carried by any of the

loops L0…Lk+1 has either an “=“ or a “<“ in the kth position
•  Conservative testing

16

Profitability of Blocking
•  Profitable if there is reuse between iterations of a loop that is

not the innermost loop

•  Reuse occurs when:
— There’s a small-threshold dependence of any type, including input,

carried by the loop (temporal reuse), or
— The loop index appears, with small stride, in the contiguous

dimension of a multidimensional array and in no other dimension
(spatial reuse)

17

Triangular Cache Blocking
•  DO I = 2, N
 DO J = 1, I-1

 A(I, J) = A(I, I) + A(J, J)
 ENDDO

 ENDDO

18

Triangular Cache Blocking
•  Applying strip mining
•  DO I = 2, N, K

 DO ii = I, I+K-1
 DO J = 1, ii – 1

 A(ii, J) = A(ii, I) + A(ii, J)

 ENDDO
 ENDDO

 ENDDO

19

Triangular Cache Blocking
•  Applying triangular loop interchange
•  DO I = 2, N, K

 DO J = 1, I+K-1
 DO ii = MAX(J+1, I), I+K-1

 A(ii, J) = A(ii, I) + A(ii, J)

 ENDDO
 ENDDO

 ENDDO

20

Summary
•  Two different kind of reuse

— Temporal reuse
— Spatial reuse

•  Strategies to increase the two reuse
— Loop Interchange
— Cache Blocking

20

