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Managing Cache (Recap)

Allen and Kennedy, Chapter 9 
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Spatial Reuse
•  Permits high reuse when accessing closely located data 
•  DO I = 1, M 

      DO J = 1, N 
         A(I, J) = A(I, J) + B(I, J) 

      ENDDO 

   ENDDO 
   No reuse/locality for Fortran’s column-major layout 
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Spatial Reuse (after loop interchange)
•  DO J = 1, N 
      DO I = 1, M 

         A(I, J) = A(I, J) + B(I, J) 
      ENDDO 

   ENDDO 

   Iterates over columns instead 
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Temporal Reuse
•  Reuse limited by cache size, LRU replacement strategy 
•  DO I = 1, M 

      DO J = 1, N 
         A(I) = A(I) + B(J) 

      ENDDO 

   ENDDO 
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Temporal Reuse
•  Strip mining + Interchange (or Tiling) can improve 

temporal reuse when tile size S is chosen so that 
inner loops can fit in cache 

 

•  DO J = 1, N, S 
      DO I = 1, M 

         DO jj = J, MIN(N, J+S-1) 

            A(I) = A(I) + B(jj) 
         ENDDO 

      ENDDO 
   ENDDO 
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Selection of Transformations
•  Open problem: how to select best combination 

of transformations to optimize locality? 

•  Today’s lecture: Automatic Selection of High-
Order Transformations in the IBM XL 
Fortran Compiler 

•  Thursday’s lecture: Polyhedral Compilation 
Framework (guest lecturer: Uday Reddy) 
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Example of Set Conflicts

real*8 A(N,N)

do 10 i = 1, N

do 10 j = 1, N

do 10 k = 1, N

10 . . . A(i,k)

Simulate A(i,k) reference

for cache parameters, 2b =

16, 2s = 32, 2d = 4, and for

96 ≤ N ≥ 160 100 110 120 130 140 150 160
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Set conflict analysis identifies the main outlying points,

N = 96, 102, 103, 114, 118, 122, 128, 146, 159, 160
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Dealing with Low Cache Utilization Efficiency

What should we do when the cache utilization efficiency is low?

Possible solutions:

1. Pad array dimension size to improve efficiency, if legal to do

so

2. Copy into temporary array with larger dimension size, if

legal and efficient to do so

3. Adjust nominal (effective) cache size to reflect actual

utilization efficiency in compiler cost functions
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Using Effective Cache Size to Estimate # Misses for a

Direct-Mapped (or Set-Associative) Cache

Summary of approach:

• Compute m = # innermost loops in locality group

assuming fully-associative cache

• For each array variable, A, set ηmin(A) = minimum stride

efficiency value across m innermost loops

• Set effective cache size S′ = ⌊ηavg/minS⌋, where ηavg/minis

the average of all ηmin(A)

• Do locality analysis assuming a fully associative cache of

size S′
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Selection of Tile Sizes — a constrained optimization

problem

Objective function: Select tile sizes t1, . . . , th so as to

minimize F(t1, . . . , th) = COSTtotal
t1× ... ×th

Constraints:

• Each tile size must be in the range 1 ≤ tk ≤ Uboundk.

• DLtotal(t1, . . . , th) ≤ ECS. The number of distinct cache

lines accessed in a tile must not exceed the effective cache

size.

• DPtotal(t1, . . . , th) ≤ ETS. The number of distinct virtual

pages accessed in a tile must not exceed the effective TLB

size.

Constant-time solution for two loops. For N > 2 loops with

negative slope, search on tk values for (N − 2) loops.
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Selection of Tile Sizes for Matrix Multiply-Transpose

Example

DLtotal(t1, t2, t3) = (0.25t1 + 0.75) t2 + (0.25t2 + 0.75) t3 +

(0.25t3 + 0.75) t1

• DLtotal(t1, t2, t3) ≤ ECS = 2048 is the active constraint

• Solution returned by algorithm is t1 = 50, t2 = 51, t3 = 51

(Note that DLtotal(50,51,51) = 2039.25 and

DLtotal(51,51,51) = 2065.50)

NOTE: in general, tile sizes need not be equal.
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Transformed Code after Tiling

do bb$_12=1,n,50

do bb$_13=1,n,51

do bb$_14=1,n,51

do i1=MAX0(1,bb$_12),MIN0(n,49 + bb$_12)

do i2=MAX0(1,bb$_13),MIN0(n,50 + bb$_13)

do i3=MAX0(1,bb$_14),MIN0(n,50 + bb$_14),1

a(i1,i2) = a(i1,i2) + b(i2,i3) * c(i3,i1)

end do

end do

end do

end do

end do

end do
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Selection of Unroll Factors

Objective function: Select unroll factors u1, . . . so as to

minimize amortized execution time per original iteration

Constraints:

• DFR(u1, . . .) ≤ EFR. The number of distinct floating-point

references in the unrolled loop body must not exceed the

effective number of floating-point registers available.

• DXR(u1, . . .) ≤ EXR. The number of distinct fixed-point

references in the unrolled loop body must not exceed the

effective number of fixed-point registers available.

Objective function may not be monotonically nonincreasing

⇒ do an exhaustive enumeration of feasible unroll factors
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Selection of Unroll Factors for Matrix Multiply-Transpose

Example

To simplify discussion, assume that only benefit of unrolling is

savings of loads of b(i2,i3) and c(i3,i1):

Amortized # loads, F(u1, u2, u3) =
u1u3 + u2u3

u1u2u3
=

1

u2
+

1

u1
DFR(u1, u2, u3) = u1u2 + u1u3 + u2u3

Setting DFR(u1, u2, u3) ≤ 28 yields u1 = 4, u2 = 4, u3 = 1 as

the best solution with DFR(4, 4,1) = 24 and F(4,4,1) = 0.5

loads/iteration.
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Preliminary Experimental Results (Multiply-Transpose)
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Data Cache Misses
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Conclusions

• We described how the ASTI transformer automatically

selects high-order transformations for a given target

uniprocessor.

• Quantitative approach to program optimization is critrical

for delivering robust optimizations across different programs

and target parameters.

• To the best of our knowledge, the ASTI transformer is the

first system to support automatic selection of the wide

range of transformations described in this paper, using a

cost-based framework.
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