
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 2 28 August 2015

COMP 515, Fall 2015 (V.Sarkar)2

Worksheet #1 (Lecture 1)
DO I = 1, N
 T = A[I] S1
 A[I] = B[I] S2
 B[I] = T S3

ENDDO

•  Using Bernstein conditions, identify pairs of statement instances
that can exhibit one of the following conditions (a different pair
for each condition)

1.  R1 writes into a memory location that R2 reads
2.  R2 writes into a memory location that R1 reads
3.  Both R1 and R2 write to the same memory location
4.  None of the above

COMP 515, Fall 2015 (V.Sarkar)3

Worksheet #2 (Lecture 1)

DO I = 1, N
 DO J = 1, M
 C(I) = A(I) + B(J)
 ENDDO

ENDDO

1.  Assuming a uniprocessor cache with one word per cache line,
and unbounded (“infinite”) capacity, how many cache misses
(memory accesses) are incurred by the above code?

2.  How does your answer change if the cache can only hold 4

words?

Name: _________________ Netid: ________________

COMP 515, Fall 2015 (V.Sarkar)4

 
Dependence: Theory and Practice

Allen and Kennedy, Chapter 2

•  Acknowledgments: slides from previous offerings of COMP 515 by
Prof. Ken Kennedy

— http://www.cs.rice.edu/~ken/comp515/

COMP 515, Fall 2015 (V.Sarkar)5

Dependence: Theory and Practice
What shall we cover in this chapter?
•  Introduction to Dependences
•  Loop-carried and Loop-independent Dependences
•  Simple Dependence Testing
•  Parallelization and Vectorization

COMP 515, Fall 2015 (V.Sarkar)6

Dependences

•  We will concentrate on data dependences
•  Chapter 7 deals with control dependences

•  Simple example of data dependence:
 S1 PI = 3.14
 S2 R = 5.0
 S3 AREA = PI * R ** 2

•  Statement S3 cannot be moved before either S1 or S2 without
compromising correct results

COMP 515, Fall 2015 (V.Sarkar)7

Dependences
•  Formally (for sequential programs):

There is a data dependence from statement S1 to statement S2 (S2
depends on S1) if:

1. Both statements access the same memory location and at least one of
them stores onto it, and

2. There is a feasible run-time execution path from S1 to S2

COMP 515, Fall 2015 (V.Sarkar)8

Load Store Classification
•  Quick review of dependences classified in terms of load-store

order:
1. True dependences (RAW = Read After Write)

–  S1 performs a write and S2 performs a read
–  S2 depends on S1 is denoted by S1 δ S2

2. Antidependence (WAR = Write After Read)

–  S1 performs a read and S2 performs a write
–  S2 depends on S1 is denoted by S1 δ-1 S2

3. Output dependence (WAW = Write After Write)

–  S1 performs a write and S2 performs a write
–  S2 depends on S1 is denoted by S1 δ0 S2

COMP 515, Fall 2015 (V.Sarkar)9

Dependence in Loops
•  Let us look at two different loops:

 DO I = 1, N
S1 A(I+1) = A(I) + B(I)
 ENDDO

 DO I = 1, N
S1 A(I+2) = A(I) + B(I)
 ENDDO

•  In both cases, statement S1 depends on itself

•  However, there is a significant difference

•  We need a formalism to describe and distinguish such
dependences

COMP 515, Fall 2015 (V.Sarkar)10

Iteration Numbers
•  The iteration number of a loop is equal to the value of the loop

index

•  Definition:
— For an arbitrary loop in which the loop index I runs from L to U in steps

of S, the iteration number i of a specific iteration is equal to the index
value I on that iteration

Example:
DO I = 0, 10, 2 // Iter nos = 0, 2, 4, 6, 8, 10

S1 <some statement>
ENDDO

COMP 515, Fall 2015 (V.Sarkar)11

Iteration Vectors

 What do we do for nested loops?
•  Need to consider the nesting level of a loop
•  Nesting level of a loop is equal to one more than the number of

loops that enclose it.
•  Given a nest of n loops, the iteration vector i of a particular

iteration of the innermost loop is a vector of integers that contains
the iteration numbers for each of the loops in order of nesting
level.

•  Thus, the iteration vector is: {i1, i2, ..., in }
where ik, 1 ≤ k ≤ m represents the iteration number for the loop at
nesting level k

COMP 515, Fall 2015 (V.Sarkar)12

Iteration Vectors
Example:

DO I = 1, 2
 DO J = 1, 2
S1 <some statement>
 ENDDO
ENDDO

•  The iteration vector S1[(2, 1)] denotes the instance of S1 executed
during the 2nd iteration of the I loop and the 1st iteration of the J
loop

COMP 515, Fall 2015 (V.Sarkar)13

Ordering of Iteration Vectors
•  Iteration Space: The set of all possible iteration vectors for a

statement

Example:
DO I = 1, 2
 DO J = 1, 2
S1 <some statement>
 ENDDO
ENDDO

•  The iteration space for S1 is { (1,1), (1,2), (2,1), (2,2) }

COMP 515, Fall 2015 (V.Sarkar)14

Ordering of Iteration Vectors
•  Useful to define an ordering for iteration vectors

•  Define an intuitive, lexicographic order
—  LLT = Lexicographically Less Than
—  LGT = Lexicographically Greater Than

•  For two vectors of equal length, X = <x1, x2, …, xn> and Y = <y1, y2, …,
yn>, LLT(X,Y) = true if and only if
—  There exists an index i such that xi < yi, and xj = yj for all 1 <= j < I

•  Define LGT(X,Y) = true similarly

•  Given two iteration vectors, X and Y, X < Y if LLT(X, Y) = true

COMP 515, Fall 2015 (V.Sarkar)15

Formal Definition of Loop Dependence
•  Theorem 2.1 Loop Dependence:

There exists a dependence from statements S1 to statement S2 in a
common nest of loops if and only if there exist two iteration
vectors i and j for the nest, such that
(1) i < j or i = j and there is a path from S1 to S2 in the body of the
loop,
(2) statement S1 accesses memory location M on iteration i and
statement S2 accesses location M on iteration j, and
(3) one of these accesses is a write.

•  Follows from the definition of dependence

COMP 515, Fall 2015 (V.Sarkar)16

Reordering Transformations
•  A reordering transformation is any program transformation that

merely changes the order of execution of the code, without adding
or deleting any executions of any statement

•  A reordering transformation does not eliminate dependences
•  A reordering transformation preserves a dependence if it preserves

the relative execution order of the source and sink of that
dependence.

•  Fundamental Theorem of Dependence:
— Any reordering transformation that preserves every dependence in a

program preserves the meaning of that program
— Proof by contradiction. Theorem 2.2 in the book.

•  A transformation is said to be valid or legal for the program to
which it applies if it preserves all dependences in the program.

COMP 515, Fall 2015 (V.Sarkar)17

Distance Vector Example
Example:

DO I = 1, N
 DO J = 1, M
 DO K = 2, L
S1 A(I+1, J, K-1) = A(I, J, K) + 10
 ENDDO
 ENDDO
ENDDO

•  S1 has a true dependence on itself.
—  E.g., from (1, 1, 3) to (2, 1, 2)
— Distance Vector: (1, 0, -1)
— Distance between two instances in a dependence

•  Are there any anti or output dependences in this
example? Time for Worksheet 1!

COMP 515, Fall 2015 (V.Sarkar)18

Direction Vector Example
Example:

DO I = 1, N
 DO J = 1, M
 DO K = 1, L
S1 A(I+1, J, f(K)) = A(I, J, K) + 10
 ENDDO
 ENDDO
ENDDO

•  S1 has a true dependence on itself.
— Direction Vector: (1, 0, *) or (<, =, *)
—  * represents any possible distance/direction value

•  S1 has an output dependence on itself.
— Direction Vector: (0, 0, *) or (=, =, *)

COMP 515, Fall 2015 (V.Sarkar)19

Implausible Distance & Direction Vectors

•  A distance vector is implausible if its leftmost nonzero
element is negative i.e., if the vector is lexicographically less
than the zero vector

•  Likewise, a direction vector is implausible if its leftmost non
"=" component is not "<"

•  No dependence in a sequential program can have an
implausible distance or direction vector as this would imply
that the sink of the dependence occurs before the source.

COMP 515, Fall 2015 (V.Sarkar)20

Homework #1
•  Homework #1, written assignment

— Solve exercises 2.2 and 2.3 in book
–  In 2.2, dependence “type” refers to flow/anti/output
–  In 2.3, you should indicate which loops can be parallelized e.g., loop

I, loop J, and/or loop K
— Due in class on Sep 8th
— Honor Code Policy: All submitted homeworks are expected to be the

result of your individual effort. You are free to discuss course material
and approaches to problems with your other classmates and the
professors, but you should never misrepresent someone else’s work as
your own. If you use any material from external sources, you must
provide proper attribution.

COMP 515, Fall 2015 (V.Sarkar)21

Problems 2.2 and 2.3
2.2 Construct all direction vectors for the following loop and
indicate the type of dependence (true/anti/output) associated with
each.
DO K = 1, 100

 DO J = 1, 100
 DO I = 1, 100
 A(I+1, J, K) = A(I, J, 5) + B
 END DO
 END DO

END DO

2.3: Can the loop in Exercise 2.2 be parallelized? If so give a
parallel version

COMP 515, Fall 2015 (V.Sarkar)22

Worksheet 1 (can be done in groups)

Example:
DO I = 1, N
 DO J = 1, M
 DO K = 2, L
S1 A(I+1, J, K-1) = A(I, J, K) + 10
 ENDDO
 ENDDO
ENDDO

•  Are there any anti or output dependences in this example? If so, list them.
If not, explain why not.

Name: _________________ Netid: ________________

