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Worksheet #1 (Lecture 1)
DO I = 1, N     
 T = A[I]    S1 
 A[I] = B[I]   S2 
 B[I] = T    S3 

ENDDO 

•  Using Bernstein conditions, identify pairs of statement instances 
that can exhibit one of the following conditions (a different pair 
for each condition) 

1.  R1 writes into a memory location that R2 reads 
2.  R2 writes into a memory location that R1 reads 
3.  Both R1 and R2 write to the same memory location 
4.  None of the above 
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Worksheet #2 (Lecture 1)

DO I = 1, N  
 DO J = 1, M  
   C(I) = A(I) + B(J) 
 ENDDO  

ENDDO 

1.  Assuming a uniprocessor cache with one word per cache line, 
and unbounded (“infinite”) capacity, how many cache misses 
(memory accesses) are incurred by the above code? 

 
2.  How does your answer change if the cache can only hold 4 

words? 

Name: _________________    Netid: ________________ 
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Dependence: Theory and Practice 

Allen and Kennedy, Chapter 2 

•  Acknowledgments: slides from previous offerings of COMP 515 by 
Prof. Ken Kennedy 

— http://www.cs.rice.edu/~ken/comp515/ 
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Dependence: Theory and Practice
What shall we cover in this chapter? 
•  Introduction to Dependences  
•  Loop-carried and Loop-independent Dependences 
•  Simple Dependence Testing 
•  Parallelization and Vectorization 
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Dependences

•  We will concentrate on data dependences 
•  Chapter 7 deals with control dependences 

•  Simple example of data dependence: 
   S1  PI = 3.14 
   S2  R = 5.0 
   S3  AREA = PI * R ** 2 
 

•  Statement S3 cannot be moved before either S1 or S2 without 
compromising correct results 
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Dependences
•  Formally (for sequential programs): 

There is a data dependence from statement S1 to statement S2 (S2 
depends on S1) if:   

1. Both statements access the same memory location and at least     one of 
them stores onto it, and 

2. There is a feasible run-time execution path from S1 to S2 
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Load Store Classification
•  Quick review of dependences classified in terms of load-store 

order: 
1. True dependences (RAW = Read After Write)  

–  S1 performs a write and S2 performs a read 
–  S2 depends on S1 is denoted by S1 δ S2 

 
2. Antidependence (WAR = Write After Read) 

–  S1 performs a read and S2 performs a write 
–  S2 depends on S1 is denoted by S1 δ-1 S2 

 
3. Output dependence (WAW = Write After Write) 

–  S1 performs a write and S2 performs a write 
–  S2 depends on S1 is denoted by S1 δ0 S2 
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Dependence in Loops
•  Let us look at two different loops: 

   DO I = 1, N 
S1   A(I+1) = A(I) + B(I) 
   ENDDO 

   DO I = 1, N 
S1  A(I+2) = A(I) + B(I) 
   ENDDO 

•  In both cases, statement S1 depends on itself 
 
•  However, there is a significant difference 
 
•  We need a formalism to describe and distinguish such  
dependences 
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Iteration Numbers
•  The iteration number of a loop is equal to the value of the loop 

index 

•  Definition:   
— For an arbitrary loop in which the loop index I runs from L to U in steps 

of S, the iteration number i of a specific iteration is equal to the index 
value I on that iteration 

Example: 
DO I = 0, 10, 2 // Iter nos = 0, 2, 4, 6, 8, 10 

S1      <some statement> 
ENDDO
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Iteration Vectors

 What do we do for nested loops? 
•  Need to consider the nesting level of a loop 
•  Nesting level of a loop is equal to one more than the number of 

loops that enclose it. 
•  Given a nest of n loops, the iteration vector i of a particular 

iteration of the innermost loop is a vector of integers that contains 
the iteration numbers for each of the loops in order of nesting 
level. 

•  Thus, the iteration vector is: {i1, i2, ..., in } 
where ik, 1 ≤ k ≤ m represents the iteration number for the loop at 
nesting level k 
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Iteration Vectors
Example: 

DO I = 1, 2 
   DO J = 1, 2 
S1       <some statement> 
   ENDDO 
ENDDO 

•  The iteration vector S1[(2, 1)] denotes the instance of S1 executed 
during the 2nd iteration of the I loop and the 1st iteration of the J 
loop 
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Ordering of Iteration Vectors
•  Iteration Space: The set of all possible iteration vectors for a 

statement 

Example: 
DO I = 1, 2 
   DO J = 1, 2 
S1       <some statement> 
   ENDDO 
ENDDO 

 

•  The iteration space for S1 is { (1,1), (1,2), (2,1), (2,2) } 
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Ordering of Iteration Vectors
•  Useful to define an ordering for iteration vectors 

•  Define an intuitive, lexicographic order 
—  LLT = Lexicographically Less Than 
—  LGT = Lexicographically Greater Than 

•  For two vectors of equal length, X = <x1, x2, …, xn> and Y = <y1, y2, …, 
yn>, LLT(X,Y) = true if and only if 
—  There exists an index i such that xi < yi, and xj = yj for all 1 <= j < I 

•  Define LGT(X,Y) = true  similarly 

•  Given two iteration vectors, X and Y, X < Y if LLT(X, Y) = true 
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Formal Definition of Loop Dependence
•  Theorem 2.1 Loop Dependence: 

There exists a dependence from statements S1 to statement S2 in a 
common nest of loops if and only if there exist two iteration 
vectors i and j for the nest, such that  
(1) i < j or i = j and there is a path from S1 to S2 in the body of the 
loop,  
(2) statement S1 accesses memory location M on iteration i and 
statement S2 accesses location M on iteration j, and  
(3) one of these accesses is a write. 

•  Follows from the definition of dependence 
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Reordering Transformations
•  A reordering transformation is any program transformation that 

merely changes the order of execution of the code, without adding 
or deleting any executions of any statement 

•  A reordering transformation does not eliminate dependences 
•  A reordering transformation preserves a dependence if it preserves 

the relative execution order of the source and sink of that 
dependence. 

•  Fundamental Theorem of Dependence: 
— Any reordering transformation that preserves every dependence in a 

program preserves the meaning of that program 
— Proof by contradiction. Theorem 2.2 in the book. 

•  A transformation is said to be valid or legal for the program to 
which it applies if it preserves all dependences in the program. 
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Distance Vector Example
Example: 

DO I = 1, N 
   DO J = 1, M 
      DO K = 2, L 
S1       A(I+1, J, K-1) = A(I, J, K) + 10 
      ENDDO 
   ENDDO 
ENDDO 

•  S1 has a true dependence on itself. 
—  E.g., from (1, 1, 3) to (2, 1, 2) 
— Distance Vector:   (1, 0, -1) 
— Distance between two instances in a dependence 

•  Are there any anti or output dependences in this 
example?  Time for Worksheet 1! 
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Direction Vector Example
Example: 

DO I = 1, N 
   DO J = 1, M 
      DO K = 1, L 
S1       A(I+1, J, f(K)) = A(I, J, K) + 10 
      ENDDO 
   ENDDO 
ENDDO 

•  S1 has a true dependence on itself. 
— Direction Vector: (1, 0, *)  or  (<, =, *) 
—  * represents any possible distance/direction value 

•  S1 has an output dependence on itself. 
— Direction Vector:   (0, 0, *) or  (=, =, *) 
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Implausible Distance & Direction Vectors

•  A distance vector is implausible if its leftmost nonzero 
element is negative i.e., if the vector is lexicographically less 
than the zero vector 

•  Likewise, a direction vector is implausible if its leftmost non 
"=" component is not "<"  

•  No dependence in a sequential program can have an 
implausible distance or direction vector as this would imply 
that the sink of the dependence occurs before the source. 
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Homework #1
•  Homework #1, written assignment 

— Solve exercises 2.2 and 2.3 in book 
–  In 2.2, dependence “type” refers to flow/anti/output 
–  In 2.3, you should indicate which loops can be parallelized e.g., loop 

I, loop J, and/or loop K 
— Due in class on Sep 8th 
— Honor Code Policy: All submitted homeworks are expected to be the 

result of your individual effort. You are free to discuss course material 
and approaches to problems with your other classmates and the 
professors, but you should never misrepresent someone else’s work as 
your own. If you use any material from external sources, you must 
provide proper attribution.  
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Problems 2.2 and 2.3
2.2 Construct all direction vectors for the following loop and 
indicate the type of dependence (true/anti/output) associated with 
each. 
DO K = 1, 100 

 DO J = 1, 100 
  DO I = 1, 100 
   A(I+1, J, K) = A(I, J, 5) + B 
  END DO 
 END DO 

END DO 
 
2.3: Can the loop in Exercise 2.2 be parallelized? If so give a 
parallel version 
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Worksheet 1 (can be done in groups)

Example: 
DO I = 1, N 
   DO J = 1, M 
      DO K = 2, L 
S1       A(I+1, J, K-1) = A(I, J, K) + 10 
      ENDDO 
   ENDDO 
ENDDO 

•  Are there any anti or output dependences in this example?  If so, list them.  
If not, explain why not. 

Name: _________________    Netid: ________________ 


