COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar

Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 20 24 November, 2015

Transformation Frameworks

Goal: develop a unified transformation framework in which legality testing and
code generation for different transformations can be unified

—Textbook approach: catalog of (AST-based) transformations
- Pro: Generality
- Con: each transformation needs special-case handling
—Lecture 19: polyhedral transformations

- Pro: more general than unimodular transformations (includes many cases
of loop distribution and fusion)

- Con: limited to transformation of “static control parts” (SCoP's)
—Lecture 18: IBM ASTI optimizer

- Pro: more general than unimodular and some cases of polyhedral

- Pro: cost-based framework for automatic selection of transformations

- Con: no unified framework for combining AST-based transformations
beyond iteration-reordering, e.g., loop distribution & fusion

Transformation Framework Case Studies

1. IBM ASTT Optimizer

e Automatic Selection of High Order Transformations in the
IBM XL Fortran Compilers”, V. Sarkar, IBM Journal of Res.
& Dev., Vol. 41, No. 3, May 1997.

2. PolyOpt: Polyhedral + AST Optimizer

e Oil and Water Can Mix: An Integration of Polyhedral and
AST-based Transformations. Jun Shirako, Louis-Noel
Pouchet, Vivek Sarkar. IEEE Conference on High Performance
Computing, Networking, Storage and Analysis (SC'14),
November 2014,

High-Order Transformations

Traditional optimizations operate on a low-level intermediate
representation that is close to the machine level

High-order transformations operate on a high-level intermediate
representation that is close to the source level

Examples of high-order transformations: loop transformations,
data alignment and padding, inline expansion of procedure
calls, ...

Selection of High-Order Transformations

Improperly selected high-order transformations can degrade
performance to levels worse than unoptimized code.

Traditional optimizations rarely degrade performance.

= automatic selection has to be performed more carefully for
high-order transformations than for traditional optimizations

This Work

e Automatic selection of high-order transformations in the
IBM XL Fortran compilers

e Quantitative approach to program optimization using cost
models

e High-order transformations selected for uniprocessor target
include: loop distribution, fusion, interchange, reversal,
skewing, tiling, unrolling, and scalar replacement of array
references

e Design and initial product implementation completed during
1991-1993

Reference: “Automatic Selection of High Order Transformations in the IBM
XL Fortran Compilers”, V. Sarkar, IBM Journal of Res. & Dev., Vol. 41,
No. 3, May 1997. (To appear).

Structure of XL Fortran Product Compiler (Version 4)

Fortran 90
front end Translation
. to HIR
Intermediate
Language Input HIR
Analyzer
-ghot ASTI Optimizer
Scalarizer
Transformer
Transformed
intermediate Transformed
language HIR
; Interprocedural Code augmentor
-qipa .
optimizer
Transformed &
Optimized augmented HIR
intermediate
language Translation
from HIR
~ Optimizing
03 back end
Optimized

RS/6000

executable

Quantitative Approach to Program Optimization

e Compiler optimization is viewed as optimization problems
based on quantitative cost models

e Cost models driven by compiler estimates of execution time
costs, memory costs, execution frequencies (obtained either
by compiler analysis or from execution profiles)

e Cost model depends on computer architecture and
computer system parameters

e Individual program transformations used in different ways to
satisfy different optimization goals

High level structure of the ASTI Transformer

Initislize LSG for
pragram region

vy

Propose Transfurmation‘

Cost
Estimation

-l

Loop Structure
Graph (LSG)

-l

Update
LSG

Dependence - |
Analysis “—."| Test for Legality

Carrinit Transformation |

Rewrite HIL

for program region

el

E

Steps performed by ASTI Transformer

-
©

©OoNOO A WNH-

Initialization

Loop distribution

Identification of perfect loop nests
Reduction recognition

Locality optimization

Loop fusion

Loop—invariant scalar replacement

Loop unrolling and interleaving

Local scalar replacement

Transcription — generate transformed HIR

Memory Cost Analysis

Consider an innermost perfect nest of h loops:
do 71 = ...

do 7 = ...

end do
end do
The job of memory cost analysis is to estimate
DL;ytai(t1, ..., t,) = #£ distinct cache lines, and
DP;yiai(te, ..., tp) = # distinct pages

accessed by a (hypothetical) tile of t1 x ... x t;, iterations.

10

Motivation for Memory Cost Functions

Assume that DL;y;, and DP, ., are small enough so that no
collision and capacity misses occur within a tile i.e.,
DL;yiaui(t1, ..., t) < effective cache size

DPy;iai(t1,-..,t,) < effective TLB size

The memory cost is then estimated as follows:

COSTiptq = (cache miss penalty) x DLygsqr +
(TLB miss penalty) x DP;ytq

Our objective is to minimize the memory cost per iteration
which is given by the ratio, COST} a1/ (t1 X ... X tp,).

11

Matrix Multiply-Transpose Example

real*8 a(n,n), b(n,n), c(n,n)

a(il1,i2) = a(i1,i2) + b(i2,i3) * c(i3,i1)
end do
end do
end do

12

Memory Cost Analysis for Matrix Multiply-Transpose
Example

Assume cache line size, L = 32 bytes:

Q

[8t1/L1t2 + [8ta/L1ts + [8t3/L1t1

(14+8(t1 —1)/L)to+ (1 +8(ta—1)/L)tz +
(1+8(tz—1)/L)t;

= (0.25t1 4+ 0.75) t> 4+ (0.25t> + 0.75) t3 +
(0.25t3 4+ 0.75) t1

DLypq1(t1,t2,t3)

Q

13

Algorithm for selecting an optimized loop ordering

1. Build a symbolic expression for

F(ty, ... ,tp) =

COSTtotal(tla

’th)

t1

X ... Xty

2. Evaluate the h partial derivatives (slopes) of function F,

OF /oty , at (t1, ... ,tp) = (1,

71)

A negative slope identifies a loop that carries

temporal/spatial locality

3. Desired ordering is to place loop with most negative slope
in innermost position, and so on.

Matrix Initialization example

14

do 10 i1 =1, n
do 10 i2 1
10 a(i1,i2)

[

n
0

||

For a PowerPC 604 processor:

DLyoia(t1,t2)

DPyoia1(t1,t2)
= COSTtotal (tl 5 t2)

(0.25t1 + 0.75)t5
(0.001953¢1 + 0.998047)t5
17 X DLygyai(t1,t2) + 21 X D Py (t1,t2)
(4.25t1to> + 12.75t5) + (0.04t1tr + 20.96¢5)

12.75

(4.25 + ;
1

oF
= 72is<0and——0

COST,
= F(ty,ty) = ————total
t1to
oF —-33.71
otq t1

Desired loop ordering is ip, iq

oto o

o

15

20.96
t1

)

Transformation Framework Case Studies

1. IBM ASTI Optimizer

e Automatic Selection of High Order Transformations in the
IBM XL Fortran Compilers”, V. Sarkar, IBM Journal of Res.
& Dev., Vol. 41, No. 3, May 1997.

2. PolyOpt: Polyhedral + AST Optimizer

e Oil and Water Can Mix: An Integration of Polyhedral and
AST-based Transformations. Jun Shirako, Louis-Noel
Pouchet, Vivek Sarkar. IEEE Conference on High Performance
Computing, Networking, Storage and Analysis (SC'14),
November 2014,

SCI14 - New Orleans, Louisiana
November |8th, 2014
Jun Shirako, Louis-Noel Pouchet, Vivek Sarkar

AST (Abstract Syntax Tree) view Polyhedral view

@ dependence S1 to S2:
i=i
k=K

oS —
@ T -

S2:
0<isn 0<isn
H@OE@O &
0<ksn i<ks<n

® Limited to loops whose bounds and

® AST captures all input programs .
accesses are affine expressions

e Multiple steps modify AST while

. : ® Single mathematical operation
keeping the semantics

computes optimal solution

Input: Output:
AST-IR AST-IR
step-| step-2 —» - —» step-n

objective-| objective-2 objective-n

® Sequence of individual loop transformations on Abstract Syntax Tree
® Including : fusion, distribution, permutation, skewing, tiling, unroll-and-jam
® Each step focuses on specific optimization objective:
® Parallelism (doall, reduction, pipeline)
® Temporal and spatial data locality
® Vectorization efficiency
® Analysis and cost model customized for each transformation
® Phase-ordering problem (which comes before/after which)

® Numerous transformations are complementary to each other

Input: Output:
Poly-IR Poly-IR

single optimization stage

unified objective

® Polyhedral model

Sl:

Algebraic framework for affine program representation and transformation
Ability to handle everything in single stage
® Unified view that captures arbitrary loop structures
® Generalizes loop transformations as form of affine transform

Complexity due to unification/generalization
® Hard to model cost functions for unified transformations

® Multiple objectives to be combined in a single cost model

// Input: sequence of two matmults
for (i = 0; i < N; i++) 1+ S1 N S2
for (j = 0; j < N; j++)
for (k = 0; k < N; k++)
tmp[i][j] += A[i](k] * B[k][]];

for (i = 0; i < N; i++)
for (j = 0; J < N; j++) S i S
for (k = 0; k < N; k++))

52: D[i](3] += C[i]1[k] * tmp[k][]];
k k
c1
// Output: Minimum reuse distance N
#pragma omp parallel for private(c2, c3) S1
for (cl = 0; cl < N; cl++) { S2
for (c2 = 0; c2 < N; c2++) {
for (¢3 = 0; c3 < N; c3++)
S1: tmp[c2][cl] += A[c2][c3] * B[c3][cl];
for (¢3 = 0; c3 < N; c3++)
S2: D[c3][cl] += C[c3][c2] * tmp[c2][cl]; c2
o}
¢34
® Obijective : Minimization of reuse distance 3
® Better temporal data locality
® Outer parallelism by pushing dependences inside
® Poor spatial data locality : not modeled in this objective

Input:

Intermediate:

Stage-|: cluster of transfo.

Output:

optimization goal-|

Stage-2 : cluster of transfo.

optimization goal-2

® Challenge : Combining multiple objectives for unified transformations

® Objectives can conflict, e.g., temporal locality (fuse loop) vs. vectorization (distribute)

® Our approach — decouple the optimization problem into two stages
with different cost functions:

® Global - i.e., inter-loop-nest

® Good candidate for polyhedral approach

Unified view that captures arbitrary loop structures (perfect & imperfect nests)

® local -i.e., per-loop-nest

® Good candidate for AST-based approach

Well-defined sequence of transformations on perfect loop nest

® Poly+AST : two-stage approach to integration

® Stage-| : Polyhedral transformations

® Finds optimal loop structures to provide sufficient data locality

Restricted form of affine transform

Extension of memory cost model for polyhedral model

® Output : locality-optimized loop nests

® Stage-2 : AST-based transformations

® |nput: loop nests and dependences from stage- |

® Sequence of individual transformations per loop nest (w/ different objectives)

Loop skewing (increase tilability)

Parallelization (outermost doall / reduction / doacross)

Loop tiling (enhance locality and granularity of parallelism)

Intra-tile optimization (e.g., register-tiling, if-optimization, ...)

® Stage-| : Cache-aware polyhedral transformations

® Stage-2 : AST-based transformations

® Experimental results vs. stage-of-the-art polyhedral compiler

® Conclusions

for (i = 0; i < N; i++)
for (3 = 0; j < N; j++)
for (k = 0; k < N; k++)
S1: tmp[i][j]1 += A[i]1[k] * B[kI[J];

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
for (k = 0; k < N; kt++)
S2: D[i]1[J] += C[i][k] * tmp[k]l[]];

® |teration domain

e D5 Set of iteration instances i = (i1, i2, ..

® Statement S; is enclosed in n loops

® Dependence polyhedron

Q,j, k) € DS G, j, k), (KN € DSI=2:

0<i<N-1
0<j<N-1
0<k<N-1

0<is<N-1 0<is<N-1
0<j<N-1 0<j<N-1
0 <k<N-1 0<k<N-1
0<i’<N-1
(i,j, k) € D52 0<j=N-1
0<k <N-1

i=k

j=7

.,ho OfSi

e DS=Si: Captures dependence from S; to S;

o (s,t)e DS & te DSidependsonse DS

11 12 ... O1d Cq . O1,101 + Xq2i2+ ..+ K1 did + Cq

_ 021 22 ... O2d C2 : 02,101 + Qo202 + ...+ Ko did + C2
OSi(j) = : =
id T T R
&n1 O&n2 ... OGnd Cn 1 On,1l1 + Gn2l2 + ...+ Qndld + Cn
i= (i1, i2, ..., id)T : iteration instances of statement S;

® Multi-dimensional affine transform
® OSiassociates i with a timestamp - i.e., logical execution date (yy/mm/dd)
® Can model any composition of loop transformations including:
Loop fusion, distribution, permutation, skewing, tiling
® [egality requirements
® For all dependence polyhedra : ©Si(f) > ©Si(s), (s, t) € DS~Si

® Restricted form of affine transformations
® To focus on optimal loop structure to provide sufficient locality

® Weaker constraints can generate simple (i.e., easy-to-optimize) codes

® Subsumes the following:
® Loop fusion, distribution and code motion
® Group statements with locality into a loop
® |Loop permutation
® Optimal loop order to optimize locality
® Loop reversal and index-set shifting
® Increase the opportunities of fusion/permutation
® No loop skewing (but supported in AST stage)
® Changes array access pattern, e.g., a[i][j] to a[i+j][j]

® Can miss spatial locality / affect memory cost analysis

0 o .. 0 B1 B

11 O12 ... O1d C1) o1, ix + C1
: : : : I :
: : : : i :
. 0 o .. O Bk] Bk
OSi(i) = | ok1 Ok2 ... Okd Ck | = | okyly
: ig :
0 Bd 1 Bad
Od1 Od2 ... Odd Cd o1,z iz + Cd g
0 0 .. 0 B Ba1 vk, 25 o[=1

® Restricted forms
® Odd row : constant offset Bk

® Even row : linear expression of index where coefficient Ok x = 1

® Symbols & transformations

o offset B« & fusion / distribution / code motion

® index ix & permutation

® coefficient Okx < reversal (apply loop reversal when Ok x = -1)
e offset Ck < index-set shifting

for ti = 0, N-1, Ti
for tj = 0, M-1, Tj
for tk = 0, K-1, Tk Ti(
for i = ti, ti+Ti-1 <
for j = tj, tj+Tj-1 Tj
for k = tk, tk+Tk-1

A[i][J] += B[k][1i];

AL

DL(Ti, Tj,Tk) = DLA(Ti,Tj,Tk) + DLg (Ti,Tj,Tk) = Tix [Tj/L1+ Tk x [Ti/LT]

Tk<

N—

Ti

BLK][1]

mem_cost(T1, Tz, ..., Ta) = COSTune * DL(T1, T2, ..., Ta) / (T1*T2* ... * Tq)

® DL (Distinct Line) model
® Assumes loop tiling to fit data within cache/TLB
® Number of Distinct cache Lines accessed within a tile
® Total cache miss counts per tile
® Average (per-iteration) memory cost

® Defined as [total cache miss penalty per tile] / [tile size]

® Most profitable loop permutation order
® Partial derivative of memory cost w.r.t. Tk :
Odmem_cost(T+, To, ..., Ta)
0T«

® Reduction rate of memory cost when increasing Tk — Priority of permutation

® |oopk with most negative value = to be innermost position

® Best loop order = descending order of amem_cost(T1, To, ..., Ta) / 0Tk

® Profitability of loop fusion
e Comparing mem_cost(T1, Tz, ..., Ta) before/after fusion

® Memory cost decreased — fusion is profitable
* tentative tile size used; final tile size selected later phase

® Other criteria, e.g., parallelism, are also considered

Input: S: set of statements S;,
PoDG : polyhedral dependence graph,
k : current nest level, or dimension,
niterS' : # iterators not yet scheduled in ©5
begin
PoDG’ = subset of PoDG w/o satisfied dependence;
SccSet := compute SCCs of PoDG
/* Intra-SCC transformation (permutation) */
for each SCC, € SccSet do

Lcompute permutation at level k and get constraints on reversal (Qk,+) and shifting (Cx);

/* Inter-SCC transformation (fusion / distribution) */
FuseSet := compute Bk and get constraints on reversal and shifting;
for each Fuse, € FuseSet do

solve constraints on reversal and shifting and compute Ok* and Ck;
if 3S; € Fuse, : niterS' > 1 then
Lrecursively process the next level - i.e., k+1;
end

Output : Dimensions k ... m of schedule ©%

// Input: sequence of two matmults

// Output: Best permutation order

for (i 0; i < N; i++) for (cl = 0; cl < N; cl++) // cl =i
for (j = 0; j < N; j++) for (c2 = 0; c2 < N; c2++) // c2 =k
for (k = 0; k < N; k++) for (c3 0; c3 < N; c3++) // e3 =3
S1: tmp[i][j] += A[i][k] * B[k][]]; S1: tmp[cl][e3] += A[cl][c2] * B[c2][c3];
for (i = 0; i < N; i++) for (¢l = 0; cl < N; cl++) // cl =1
for (j = 0; j < N; j++) for (c2 = 0; c2 < N; c2++) // c2 =k
for (k = 0; k < N; k++) for (c3 0; c3 < N; c3++) // e3 =3
S§2: D[i][j] += C[i][k] * tmp[k][]]; S$2: D[cl][e3] += C[cl][c2] * tmp[c2][ec3];
tmp/DIi][j] A/CIi][K] B/Amp[K][j]
i N/A N/A temporal
j spatial temporal spatial
k temporal spatial N/A

e Optimization policy

Permute loops as close to the DL best order as possible

Fuse loops if legality and profitability criteria are met

® Qutput of polyhedral stage

Locality-optimized loop nests

Permuted with legal & profitable loop order

Fused statements with locality into a loop

Dependence information

2(

(s, t) € PS~Si: relationship between source and target instances S and t

Extracted as dependence vector - i.e,d=t-s

® [nput of AST-based stage

loopk : a loop that is nested at level k € {I ...n}

Aloopy = {d!, o2, ..., d"} :

Set of dependences whose source and target statements are within /oopx

Free from affine constraints in AST-based stage

2

® Dependence vectors : base of analysis
® Legality : loop skewing, loop tiling, register tiling, ...
® Detection of parallelism
® Sequence of transformations in stage-2
® | oop skewing
® In order to increase permutability (i.e., applicability of tiling) and parallelism
e Coarse-grain parallelization
® Doall / reduction / doacross parallelism
® |oop tiling
® Enhance computation granularity and data locality
® [ntra-tile optimizations

® Register-tiling (i.e., multi-dimensional unrolling)

® Loop permutation order
® To optimize spatial and temporal data locality
® Outermost loop is not always doall

® Also leverage other parallelism : reduction and doacross (pipeline parallelism)

* Reduction parallelism * Doall-only approach
#pragma omp for reduction(+: S[O0:N-1]) #pragma omp for
for (i = 0; i < N; i++) for (j = 0; j < N; j++)
for (j = 0; Jj < N; j++) for (i = 0; i < N; i++)
S[j] += alpha * X[i][]]; S[j] += alpha * X[1i][j];
* Doacross parallelism (OpenMP 4.5) * Doall-only approach
#pragma omp for ordered(2) #pragma omp for
for (i = 1; 1 < N-1; i++) { for (j = 0; j < N; j++)
for (j = 0; j < N; j++) { for (i = 1; 1 < N-1; i++)
#pragma omp ordered depend(sink: i-1,3j) C[i][j] = 0.33 * (C[i-11[3]
C[il[j] = 0.33 * (C[i-1][]] + C[Li][J] + C[i+1][F]);

+ C[i][J] + C[i+1][]1);
#pragma omp ordered depend(src: i,j)

P}

Pipeline Parallelism vs.Wavefront Doall

® Pipeline parallelism (OpenMP extension)

#pragma omp parallel for ordered(2)
for (i = 1; i < N-1; i++) {
for (j = 1; j < N-1; j++) {
#pragma omp ordered depend(sink: i-1,3j)
depend(sink: i,j-1)
A[i][j] = A[i-1]1[3] + a[il[j-11;
#pragma omp ordered depend(src: i,j)

} o}

® Wavefront doall with skewing

Sl:

S2:

Sl:
S2:

Sl:
S2:

//

#pragma omp parallel
for (i = 2; 1 <= 2*N-4; i++) {
#pragma omp for
for (j = max(1l,i-N+2);
j < min(N-2,i-1); j++) {

P}

=1 =208 =4

1 {eieitetie

3 otetiere.

4 {0TreTreTre.

—> 1 p2p Ssync . ::seq. region

i=1 i=2 =3 i=4

=1

j=2

j=3

A[i-31031 = A[i-3-11[3J] + ali-J1[]-11; j=4

—: all-to-all barrier

24

Another Example : Jacobi-1d stencil

Input (imperfect nest)

for (t = 0; t < time steps; t++) {
for (i = 1; i < n-1; i++)
b[i] = 0.33 * (a[i-1] + a[i] + a[i+1l]);
for (i = 1; i < n-1; i++)
a[fi] = b[il;
}

// Stage-1: polyhedral transformation (perfect nest)
for (cl = 0; cl <= time steps-1; cl++) {

}

//
//
//

#pragma omp parallel for private(c3) ordered(2)

for (¢3 = 1; ¢c3 <= n-1; c3++) {

if (¢3 <= n-2) b[c3] = 0.33 * (a[c3-1] + a[c3] + a[c3+1]);

if (¢3 >= 2) a[c3-1] = b[c3-1];
}

Stage-2: skewing & parallelization
- Loop nest is fully permutable

- Doacross parallelization by OpenMP extensions

for (cl = 0; cl < time steps; cl++) {

for (c3 = 2*cl+l; c3 < 2*cl+n; c3++) {

#pragma omp ordered depend(sink: cl-1,c3) depend (sink: cl,c3-1)
if (i <= n-2) b[-2*cl+c3] = 0.33*(a[-2*cl+c3-1]+a[-2*cl+c3]+a[-2*cl+c3+1]);

if (i >= 2) a[-2*cl+c3-1] = b[-2*cl+c3-1];

#pragma omp ordered depend(source: cl,c3)

}

}

// Stage-2: loop tiling
#pragma omp parallel for private(c3,c5,i) ordered(2)
for (¢l = ...) {
for (c¢3 = ...) {
#pragma omp ordered depend(sink: cl-1,c3) depend(sink: cl,c3-1)

for (¢5 = ...) {

if (...) B[1] = 0.33 * (A[1-1] + A[1l] + A[1+1]);
for (¢7 = ...) {
S1: b[-2*c5+c7] = 0.33 * (a[-2*c5+c7-1] + a[-2*c5+c7] + a[-2*c5+cT7+1]);
S2: a[-2*c5+c7-1] = b[-2*c5+c7-1];
}
if (...) A[n-2] = B[n-2];
}

#pragma omp ordered depend(source: cl,c3)

}}

// Stage-2: register tiling (innermost by factor = 2)

for (¢7 = ...; c7 <= (...)-1; c7+=2) {

S1: b[-2*c5+c7] = 0.33 * (a[-2*c5+c7-1]+a[-2*c5+c7]+ta[-2*c5+c7+1]);

S2: a[-2*c5+c7-1] = b[-2*c5+c7-1];

S1': b[-2*c5+c7+1] = 0.33 * (a[-2*c5+c7+1-1]+a[-2*c5+c+1l]+a[-2*c5+cT7+1+1]);
S2': a[-2*c5+c7+1-1] = b[-2*c5+c7+1-1];

}
2%

® Platforms
® Two quad-core 2.8GHz Intel Core i7 (Nehalem) with Intel C compiler 12.0
® Four eight-core 3.86GHz IBM Power7 with IBM XLC compiler |1.1

® Benchmarks
® PolyBench-C 3.2 (22 benchmarks, standard/large dataset)

® Comparisons

® PoCC: research polyhedral compiler [http://www.cs.ucla.edu/~pouchet/software/pocc]

® PLuTo heuristic for parallelism, locality, tiling and intra-tile optimizations
® Doall parallelism (convert doacross into wavefront doall)

® PoCC-iterative : Iterative compilation approach [Pouchet-SC’|0]
® PoCC + empirical search for outermost fusion/distribution

® Poly+AST : proposed integration approach

® Doall / doacross / reduction parallelism

® Additional results in paper, e.g., ICC and XLC

GFLOP/s on Nehalem (doall dominant)

40

35

30
25

20

GFLOP/s

15
10

2mm 3mm doitgen fdtd-apml gemm gesummv syr2k syrk

Bl PoCC B PoCC-iterative " Poly+AST
® PoCC < PoCC-iterative < Poly+AST

® PoCC-iterative : empirical search for fusion/distribution

® Poly+AST (polyhedral stage) : DL model for fusion/dist. and permutation "

GFLOP/s on Nehalem (doacross-parallel dominant)

25

20

GFLOP/s
o

-
o

adi cholesky fdtd-2d jacobi-1d jacobi-2d seidel-2d trisolv

Bl PoCC B PoCC-iterative " Poly+AST

® PoCC = PoCC-iterative < Poly+AST
® adi/ cholesky / fdtd-2d : loop structures (e.g., fusion, perm., index-shifting)

® jacobi-2d : DOACROSS parallelization vs. wavefront doall by skewing "

GFLOP/s on Nehalem (with reduction parallelism)

Sl:
S2:
S3:

Sl:

S2:
S3:

GFLOP/s

14

12

-
o

o

atax bicg correl covar gemver mvt symm

Bl PoCC B PoCC-iterative " Poly+AST
® PoCC < PoCC-iterative < Poly+AST

® Reduction support to increase flexibility of loop permutation

® Loop order w/ better locality while keeping outermost parallelism 3¢

Transformed Codes by PoCC and Poly+AST

// PoCC optimized (omitting tiling and intra-tile optimizations)
#pragma omp parallel for private(c2, c3)
for (cl = 2; cl <= NJ-1; cl++) {

}

for (c2 = 0; c2 <= NI-1; c2++) {

for (c3 0; c3 <= cl+NI-1; c3++) {
if (¢3 <= cl-2) acc[c2][cl] += B[c3][cl] * A[c3][c2];
if (c2 <= cl-2 && c3 >= cl) C[c2][cl] += alpha * A[c2][-cl+c3] * B[-cl+c3][cl];
if (¢3 == cl+c2) C[c2][cl] = beta * C[c2][cl] + alpha * A[c2][c2] * B[c2][cl]
P

doall accessing inner array dimensions; poor spatial locality

// Poly+AST optimized (omitting tiling and intra-tile optimizations)
#pragma omp parallel for private(c3, c5) reduction(+: acc[0:NI-1][2:NJ-1])
for (cl = 0; cl <= NJ-3; cl++) {

}

for (c3 = 0; c3 <= NI-1; c3++) {
for (¢5 = cl + 2; c5 <= NJ-1; c5++) {
acc[c3][c5] += B[cl][c5] * A[cl][c3];
} o}

#pragma omp parallel for private(c3, c5)
for (cl = 0; cl <= MAX(NI-1, NJ-3); cl++) {

}

for (c3 = 0; c3 <= NI-1; c3++) {
for (¢5 = 0; c5 <= NJ-1; c5++) {
if (c¢5 >= cl+2) C[cl][c5] += alpha * A[cl][c3] * B[c3][c5];
if (¢3 == cl) C[ecl][c5] = beta * C[cl][c5] + alpha * A[cl][cl] * B[cl][c5]
o}
reduction / doall accessing outer array dimensions; better spatial locality
31

GFLOP/s on Power7 (doall dominant)

100
90
80
70
60
50
40
30
20
10

0

GFLOP/s

2mm 3mm doitgen fdtd-apml gemm gesummv syr2k syrk

Bl PoCC B PoCC-iterative " Poly+AST

® PoCC = PoCC:-iterative < Poly+AST

® Good selection of loop structures (e.g., fusion/distribution and permutation)
32

GFLOP/s on Power7 (doacross-parallel dominant)

30

25

20

15

GFLOP/s

10

5

0

adi cholesky fdtd-2d jacobi-1d jacobi-2d seidel-2d trisolv

Bl PoCC B PoCC-iterative " Poly+AST

® PoCC = PoCC-iterative < Poly+AST

® Efficiency of DOACROSS has more impact (32-core Power7 vs. 8-core Nehalem)
33

GFLOP/s on Power7 (with reduction parallelism)

30
25
20

15

GFLOP/s

10

atax bicg correl covar gemver mvt symm

M PoCC W lterative Poly+AST [l Poly+AST (red-off)

® Reduction reduces performance (correl, covar and symm)
® Sequential aggregation for final results is scalability bottleneck
® Future work : parallel aggregation

Take-home Message

® AST-based transformations

® Sequence of individual loop transformations

® Difficulty in composing the optimal sequence (i.e., phase-ordering)
® Polyhedral model

® Unification & generalization of loop transformations

e Difficulty in modeling cost functions for whole unified transformations
® |Integration of both

® Decoupling the optimization problem into two stages

® Polyhedral model as first stage, AST-based as second stage

® Simpler & customized cost modeling within stage

® Each stage leverage its strengths

® Geometric mean speedup vs. PoCC (polyhedral optimizer)

® |.62x on 8-core Nehalem / 1.49x on 32-core Power7

34

35

