COMP 515: Advanced Compilation for Vector and Parallel Processors

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515
Transformation Frameworks

• Goal: develop a unified transformation framework in which legality testing and code generation for different transformations can be unified

 — Textbook approach: catalog of (AST-based) transformations
 - Pro: Generality
 - Con: each transformation needs special-case handling

 — Lecture 19: polyhedral transformations
 - Pro: more general than unimodular transformations (includes many cases of loop distribution and fusion)
 - Con: limited to transformation of “static control parts” (SCoP’s)

 — Lecture 18: IBM ASTI optimizer
 - Pro: more general than unimodular and some cases of polyhedral
 - Pro: cost-based framework for automatic selection of transformations
 - Con: no unified framework for combining AST-based transformations beyond iteration-reordering, e.g., loop distribution & fusion
Transformation Framework Case Studies

1. **IBM ASTI Optimizer**

2. **PolyOpt: Polyhedral + AST Optimizer**
High-Order Transformations

Traditional optimizations operate on a low-level intermediate representation that is close to the machine level.

High-order transformations operate on a high-level intermediate representation that is close to the source level.

Examples of high-order transformations: loop transformations, data alignment and padding, inline expansion of procedure calls, ...
Selection of High-Order Transformations

Improperly selected high-order transformations can degrade performance to levels worse than unoptimized code.

Traditional optimizations rarely degrade performance.

⇒ automatic selection has to be performed more carefully for high-order transformations than for traditional optimizations
This Work

- Automatic selection of high-order transformations in the IBM XL Fortran compilers
- Quantitative approach to program optimization using cost models
- High-order transformations selected for uniprocessor target include: loop distribution, fusion, interchange, reversal, skewing, tiling, unrolling, and scalar replacement of array references
- Design and initial product implementation completed during 1991–1993

Structure of XL Fortran Product Compiler (Version 4)

- Fortran 90 front end
- Intermediate Language
 - qhot
 - ASTI Optimizer
 - Transformed intermediate language
 - qipa
 - Interprocedural optimizer
 - Optimized intermediate language
 - -O3
 - Optimizing back end
 - Optimized RS/6000 executable
 - Optimizing back end
- Translation to HIR
- Input HIR
- Analyzer
- Scalarizer
- Transformer
 - Transformed HIR
 - Code augmentor
 - Transformed & augmented HIR
 - Translation from HIR
- Optimized intermediate language
- Optimized RS/6000 executable
Quantitative Approach to Program Optimization

- Compiler optimization is viewed as optimization problems based on quantitative cost models.

- Cost models driven by compiler estimates of execution time costs, memory costs, execution frequencies (obtained either by compiler analysis or from execution profiles).

- Cost model depends on computer architecture and computer system parameters.

- Individual program transformations used in different ways to satisfy different optimization goals.
High level structure of the ASTI Transformer
Steps performed by ASTI Transformer

1. Initialization
2. Loop distribution
3. Identification of perfect loop nests
4. Reduction recognition
5. Locality optimization
6. Loop fusion
7. Loop--invariant scalar replacement
8. Loop unrolling and interleaving
9. Local scalar replacement
10. Transcription — generate transformed HIR
Memory Cost Analysis

Consider an innermost perfect nest of h loops:

\[
\begin{align*}
\text{do } i_1 = \ldots & \\
\ldots & \\
\text{do } i_h = \ldots & \\
\ldots & \\
\text{end do} & \\
\ldots & \\
\text{end do} &
\end{align*}
\]

The job of memory cost analysis is to estimate

\[
\begin{align*}
DL_{total}(t_1, \ldots, t_h) &= \# \text{ distinct cache lines, and} \\
DP_{total}(t_1, \ldots, t_h) &= \# \text{ distinct pages} \\
\end{align*}
\]

accessed by a (hypothetical) tile of $t_1 \times \ldots \times t_h$ iterations.
Motivation for Memory Cost Functions

Assume that DL_{total} and DP_{total} are small enough so that no collision and capacity misses occur within a tile i.e.,

$DL_{total}(t_1,\ldots,t_h) \leq$ effective cache size

$DP_{total}(t_1,\ldots,t_h) \leq$ effective TLB size

The memory cost is then estimated as follows:

$$COST_{total} = (\text{cache miss penalty}) \times DL_{total} + (\text{TLB miss penalty}) \times DP_{total}$$

Our objective is to minimize the memory cost per iteration which is given by the ratio, $COST_{total}/(t_1 \times \ldots \times t_h)$.
Matrix Multiply-Transpose Example

real*8 a(n,n), b(n,n), c(n,n)

...

do i1 = 1, n
 do i2 = 1, n
 do i3 = 1, n
 a(i1,i2) = a(i1,i2) + b(i2,i3) * c(i3,i1)
 end do
 end do
end do
Memory Cost Analysis for Matrix Multiply-Transpose Example

Assume cache line size, $L = 32$ bytes:

$$DL_{total}(t_1, t_2, t_3) \approx \lceil \frac{8t_1}{L} \rceil t_2 + \lceil \frac{8t_2}{L} \rceil t_3 + \lceil \frac{8t_3}{L} \rceil t_1$$

$$\approx (1 + 8(t_1 - 1)/L) t_2 + (1 + 8(t_2 - 1)/L) t_3 + (1 + 8(t_3 - 1)/L) t_1$$

$$= (0.25t_1 + 0.75) t_2 + (0.25t_2 + 0.75) t_3 + (0.25t_3 + 0.75) t_1$$
Algorithm for selecting an optimized loop ordering

1. Build a symbolic expression for

\[F(t_1, \ldots, t_h) = \frac{COST_{total}(t_1, \ldots, t_h)}{t_1 \times \ldots \times t_h} \]

2. Evaluate the \(h \) partial derivatives (slopes) of function \(F \), \(\delta F/\delta t_k \), at \((t_1, \ldots, t_h) = (1, \ldots, 1) \)

A negative slope identifies a loop that carries temporal/spatial locality

3. Desired ordering is to place loop with most negative slope in innermost position, and so on.
Matrix Initialization example

do 10 i1 = 1, n
 do 10 i2 = 1, n
10 a(i1,i2) = 0

For a PowerPC 604 processor:

\[
DL_{total}(t_1, t_2) = (0.25t_1 + 0.75)t_2
\]
\[
DP_{total}(t_1, t_2) = (0.001953t_1 + 0.998047)t_2
\]
\[
\Rightarrow COST_{total}(t_1, t_2) = 17 \times DL_{total}(t_1, t_2) + 21 \times DP_{total}(t_1, t_2)
\]
\[
= (4.25t_1t_2 + 12.75t_2) + (0.04t_1t_2 + 20.96t_2)
\]
\[
\Rightarrow F(t_1, t_2) = \frac{COST_{total}}{t_1t_2} = \left(4.25 + \frac{12.75}{t_1}\right) + \left(0.04 + \frac{20.96}{t_1}\right)
\]
\[
\Rightarrow \frac{\delta F}{\delta t_1} = \frac{-33.71}{t_1^2} \text{ is < 0 and } \frac{\delta F}{\delta t_2} = 0
\]

Desired loop ordering is \(i_2, i_1\)
Transformation Framework Case Studies

1. IBM ASTI Optimizer

2. PolyOpt: Polyhedral + AST Optimizer
Oil and Water Can Mix: An Integration of Polyhedral and AST-based Transformations

SC14 - New Orleans, Louisiana
November 18th, 2014
Jun Shirako, Louis-Noel Pouchet, Vivek Sarkar
Two Views of Program Representations

AST (Abstract Syntax Tree) view

- AST captures all input programs
- Multiple steps modify AST while keeping the semantics

Polyhedral view

- Limited to loops whose bounds and accesses are affine expressions
- Single mathematical operation computes optimal solution

dependence S1 to S2:

- \(i = i' \)
- \(k = k' \)

S1:

- \(0 \leq i \leq n \)
- \(0 \leq j \leq n \)
- \(0 \leq k \leq n \)

S2:

- \(0 \leq i \leq n \)
- \(0 \leq j \leq n \)
- \(i \leq k \leq n \)
Sequence of individual loop transformations on Abstract Syntax Tree

- Including: fusion, distribution, permutation, skewing, tiling, unroll-and-jam
- Each step focuses on specific optimization objective:
 - Parallelism (doall, reduction, pipeline)
 - Temporal and spatial data locality
 - Vectorization efficiency
- Analysis and cost model customized for each transformation
- Phase-ordering problem (which comes before/after which)
- Numerous transformations are complementary to each other
Mathematical Approach to Unified Transformation

- **Polyhedral model**
 - Algebraic framework for affine program representation and transformation
 - Ability to handle everything in single stage
 - Unified view that captures arbitrary loop structures
 - Generalizes loop transformations as form of affine transform
 - Complexity due to unification/generalization
 - Hard to model cost functions for unified transformations
 - Multiple objectives to be combined in a single cost model
Objective: Minimization of reuse distance

Better temporal data locality

Outer parallelism by pushing dependences inside

Poor spatial data locality: not modeled in this objective

Cost Model Example in Polyhedral Approaches

// Input: sequence of two matmults
for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
 S1: tmp[i][j] += A[i][k] * B[k][j];

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
 S2: D[i][j] += C[i][k] * tmp[k][j];

// Output: Minimum reuse distance
#pragma omp parallel for private(c2, c3)
for (c1 = 0; c1 < N; c1++) {
 for (c2 = 0; c2 < N; c2++) {
 for (c3 = 0; c3 < N; c3++)
 S1: tmp[c2][c1] += A[c2][c3] * B[c3][c1];
 for (c3 = 0; c3 < N; c3++)
 S2: D[c3][c1] += C[c3][c2] * tmp[c2][c1];
 }
}
Mathematical Approach to Unified Transformation

- **Challenge**: Combining multiple objectives for unified transformations
 - Objectives can conflict, e.g., temporal locality (fuse loop) vs. vectorization (distribute)

- **Our approach** — **decouple the optimization problem into two stages with different cost functions**:
 - **Global** - i.e., inter-loop-nest
 - Good candidate for polyhedral approach
 - Unified view that captures arbitrary loop structures (perfect & imperfect nests)
 - **Local** - i.e., per-loop-nest
 - Good candidate for AST-based approach
 - Well-defined sequence of transformations on perfect loop nest
Integrating Polyhedral and AST-based Transformations

- **Poly+AST**: two-stage approach to integration
 - **Stage-1**: Polyhedral transformations
 - Finds optimal loop structures to provide sufficient data locality
 - Restricted form of affine transform
 - Extension of memory cost model for polyhedral model
 - **Output**: locality-optimized loop nests
 - **Stage-2**: AST-based transformations
 - **Input**: loop nests and dependences from stage-1
 - Sequence of individual transformations per loop nest (w/ different objectives)
 - Loop skewing (increase tilability)
 - Parallelization (outermost doall / reduction / doacross)
 - Loop tiling (enhance locality and granularity of parallelism)
 - Intra-tile optimization (e.g., register-tiling, if-optimization, ...
Outline

- Introduction
- Stage-1: Cache-aware polyhedral transformations
- Stage-2: AST-based transformations
- Experimental results vs. stage-of-the-art polyhedral compiler
- Conclusions
Polyhedral Representation of Program

- **Iteration domain**
 - D^S_i: Set of iteration instances $i = (i_1, i_2, ..., i_n)$ of S_i
 - Statement S_i is enclosed in n loops

- **Dependence polyhedron**
 - $D^{S_i \rightarrow S_j}$: Captures dependence from S_i to S_j
 - $(s, t) \in D^{S_i \rightarrow S_j} \iff t \in D^{S_j}$ depends on $s \in D^{S_i}$
General Affine Program Transformation

\[\Theta^S_i(i) = \begin{pmatrix} \alpha_{1,1} & \alpha_{1,2} & \ldots & \alpha_{1,d} & c_1 \\ \alpha_{2,1} & \alpha_{2,2} & \ldots & \alpha_{2,d} & c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha_{n,1} & \alpha_{n,2} & \ldots & \alpha_{n,d} & c_n \end{pmatrix} \begin{pmatrix} i_1 \\ i_2 \\ \vdots \\ i_d \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha_{1,1} i_1 + \alpha_{1,2} i_2 + \ldots + \alpha_{1,d} i_d + c_1 \\ \alpha_{2,1} i_1 + \alpha_{2,2} i_2 + \ldots + \alpha_{2,d} i_d + c_2 \\ \vdots \\ \vdots \\ \alpha_{n,1} i_1 + \alpha_{n,2} i_2 + \ldots + \alpha_{n,d} i_d + c_n \end{pmatrix} \]

\[i = (i_1, i_2, \ldots, i_d)^T : \text{iteration instances of statement } S_i \]

- **Multi-dimensional affine transform**
 - \(\Theta^S_i \) associates \(i \) with a *timestamp* - i.e., logical execution date (yy/mm/dd)
 - Can model any composition of loop transformations including:
 - Loop fusion, distribution, permutation, skewing, tiling

- **Legality requirements**
 - For all dependence polyhedra: \(\Theta^S_j(t) \succ \Theta^S_i(s) \), \(\langle s, t \rangle \in \mathcal{D}^{S_i \to S_j} \)
Stage-1: Cache-aware Polyhedral Transformations

- **Restricted form of affine transformations**
 - To focus on optimal loop structure to provide sufficient locality
 - Weaker constraints can generate simple (i.e., easy-to-optimize) codes

- **Subsumes the following:**
 - Loop fusion, distribution and code motion
 - Group statements with locality into a loop
 - Loop permutation
 - Optimal loop order to optimize locality
 - Loop reversal and index-set shifting
 - Increase the opportunities of fusion/permutation
 - **No loop skewing (but supported in AST stage)**
 - Changes array access pattern, e.g., $a[i][j]$ to $a[i+j][j]$
 - Can miss spatial locality / affect memory cost analysis
Proposed Restricted Affine Transformation

\[\Theta_{S_i}(i) = \begin{pmatrix} 0 & 0 & \ldots & 0 & \beta_1 \\ \alpha_{1,1} & \alpha_{1,2} & \ldots & \alpha_{1,d} & c_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & 0 & \beta_k \\ \alpha_{k,1} & \alpha_{k,2} & \ldots & \alpha_{k,d} & c_k \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & 0 & \beta_d \\ \alpha_{d,1} & \alpha_{d,2} & \ldots & \alpha_{d,d} & c_d \\ 0 & 0 & \ldots & 0 & \beta_{d+1} \end{pmatrix} \begin{pmatrix} i_1 \\ i_2 \\ \vdots \\ i_d \\ 1 \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \alpha_{1,x}i_x + c_1 \\ \vdots \\ \beta_k \\ \alpha_{k,y}i_y + c_k \\ \vdots \\ \beta_d \\ \alpha_{1,z}i_z + c_d \\ \beta_{d+1} \end{pmatrix} \forall k, \sum_{j=1}^{d} |\alpha_{k,j}| = 1 \]

- **Restricted forms**
 - Odd row: constant offset \(\beta_k \)
 - Even row: linear expression of index where coefficient \(\alpha_{k,x} = \pm 1 \)

- **Symbols \(\Leftrightarrow \) transformations**
 - Offset \(\beta_k \) \(\Leftrightarrow \) fusion / distribution / code motion
 - Index \(i_x \) \(\Leftrightarrow \) permutation
 - Coefficient \(\alpha_{k,x} \) \(\Leftrightarrow \) reversal (apply loop reversal when \(\alpha_{k,x} = -1 \))
 - Offset \(c_k \) \(\Leftrightarrow \) index-set shifting
Cost Model to Guide Polyhedral Transfo.

for $ti = 0, N-1$, Ti
for $tj = 0, M-1$, Tj
for $tk = 0, K-1$, Tk
 for $i = ti, ti+Ti-1$
 for $j = tj, tj+Tj-1$
 for $k = tk, tk+Tk-1$
 $A[i][j] += B[k][i]$;

$$DL(Ti,Tj,Tk) = DL_A(Ti,Tj,Tk) + DL_B (Ti,Tj,Tk) = Ti \times \left\lceil \frac{Tj}{L} \right\rceil + Tk \times \left\lceil \frac{Ti}{L} \right\rceil$$

$$\text{mem_cost}(T_1, T_2, ..., T_d) = \text{COST_LINE} \times DL(T_1, T_2, ..., T_d) / (T_1 \times T_2 \times ... \times T_d)$$

- **DL (Distinct Line) model**
 - Assumes loop tiling to fit data within cache/TLB
 - Number of Distinct cache Lines accessed within a tile
 - Total cache miss counts per tile

- **Average (per-iteration) memory cost**
 - Defined as $[\text{total cache miss penalty per tile}] / [\text{tile size}]$
Profitability Analysis via DL Memory Cost

- Most profitable loop permutation order
 - Partial derivative of memory cost w.r.t. T_k:
 \[
 \frac{\partial \text{mem_cost}(T_1, T_2, \ldots, T_d)}{\partial T_k}
 \]
 - Reduction rate of memory cost when increasing $T_k \rightarrow$ Priority of permutation
 - Loop$_k$ with most negative value \rightarrow to be innermost position
 - Best loop order = descending order of $\frac{\partial \text{mem_cost}(T_1, T_2, \ldots, T_d)}{\partial T_k}$

- Profitability of loop fusion
 - Comparing mem_cost(T_1, T_2, \ldots, T_d) before/after fusion
 - Memory cost decreased \rightarrow fusion is profitable
 - * tentative tile size used; final tile size selected later phase
 - Other criteria, e.g., parallelism, are also considered
Affine Transformation Algorithm

Input:
\[S : \text{set of statements} \, S_i, \]
\[PoDG : \text{polyhedral dependence graph}, \]
\[k : \text{current nest level, or dimension}, \]
\[niter^{Si} : \# \text{iterators not yet scheduled in } \Theta^{Si} \]

begin

PoDG’ := subset of PoDG w/o satisfied dependence;

SccSet := compute SCCs of PoDG’;

/* Intra-SCC transformation (permutation) */
for each SCC\(_a\) \(\in\) SccSet do
 compute permutation at level \(k\) and get constraints on reversal (\(\alpha_k,*\)) and shifting (\(c_k\));

/* Inter-SCC transformation (fusion / distribution) */
FuseSet := compute \(\beta_k\) and get constraints on reversal and shifting;
for each Fuse\(_a\) \(\in\) FuseSet do
 solve constraints on reversal and shifting and compute \(\alpha_k,*\) and \(c_k\);
 if \(\exists S_i \in\) Fuse\(_a\) : \(niter^{Si} \geq 1\) then
 recursively process the next level - i.e., \(k+1\);

end

Output:
Dimensions \(k \ldots m\) of schedule \(\Theta^{Si}\)
Running Example : 2mm

// Input: sequence of two matmults
for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
 S1: \(\text{tmp}[i][j] += A[i][k] * B[k][j]; \)

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
 S2: \(\text{D}[i][j] += C[i][k] * \text{tmp}[k][j]; \)

// Output: Best permutation order
for (c1 = 0; c1 < N; c1++) // c1 = \(i \)
 for (c2 = 0; c2 < N; c2++) // c2 = \(k \)
 for (c3 = 0; c3 < N; c3++) // c3 = \(j \)
 S1: \(\text{tmp}[c1][c3] += A[c1][c2] * B[c2][c3]; \)

for (c1 = 0; c1 < N; c1++) // c1 = \(i \)
 for (c2 = 0; c2 < N; c2++) // c2 = \(k \)
 for (c3 = 0; c3 < N; c3++) // c3 = \(j \)
 S2: \(\text{D}[c1][c3] += C[c1][c2] * \text{tmp}[c2][c3]; \)

tmp/D[i][j] A/C[i][k] B/tmp[k][j]
i N/A N/A temporal
j spatial temporal spatial
k temporal spatial N/A

• Optimization policy
 • Permute loops as close to the DL best order as possible
 • Fuse loops if legality and profitability criteria are met
Connection between Polyhedral and AST-based Stages

- **Output of polyhedral stage**
 - Locality-optimized loop nests
 - Permuted with legal & profitable loop order
 - Fused statements with locality into a loop
 - Dependence information
 - \(\langle s, t \rangle \in P_{e^{Si \rightarrow Sj}} \): relationship between source and target instances \(s \) and \(t \)
 - Extracted as dependence vector - i.e., \(d = t - s \)

- **Input of AST-based stage**
 - \(\text{loop}_k \): a loop that is nested at level \(k \in \{1 \ldots n\} \)
 - \(\Delta^{\text{loop}_k} = \{d^1, d^2, \ldots, d^n\} : \)
 - Set of dependences whose source and target statements are within \(\text{loop}_k \)
 - Free from affine constraints in AST-based stage
Stage-2: AST-based Transformation

- **Dependence vectors: base of analysis**
 - Legality: loop skewing, loop tiling, register tiling, ...
 - Detection of parallelism

- **Sequence of transformations in stage-2**
 - Loop skewing
 - In order to increase permutability (i.e., applicability of tiling) and parallelism
 - Coarse-grain parallelization
 - Doall / reduction / doacross parallelism
 - Loop tiling
 - Enhance computation granularity and data locality
 - Intra-tile optimizations
 - Register-tiling (i.e., multi-dimensional unrolling)
Parallelism in Poly+AST Framework

• Loop permutation order
 • To optimize spatial and temporal data locality
 • Outermost loop is not always doall
 • Also leverage other parallelism: reduction and doacross (pipeline parallelism)

• Reduction parallelism
 #pragma omp for reduction(+: S[0:N-1])
 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 S[j] += alpha * X[i][j];

• Doacross parallelism (OpenMP 4.5)
 #pragma omp for ordered(2)
 for (i = 1; i < N-1; i++) {
 for (j = 0; j < N; j++) {
 #pragma omp ordered depend(sink: i-1,j)
 C[i][j] = 0.33 * (C[i-1][j]
 + C[i][j] + C[i+1][j]);
 #pragma omp ordered depend(src: i,j)
 } }

• Doall-only approach
 #pragma omp for reduction(+: S[0:N-1])
 #pragma omp for ordered(2)
 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 S[j] += alpha * X[i][j];

• Doall-only approach
 #pragma omp for
 for (j = 0; j < N; j++)
 for (i = 0; i < N; i++)
 S[j] += alpha * X[i][j];
Pipeline Parallelism vs. Wavefront Doall

- **Pipeline parallelism (OpenMP extension)**

  ```
  #pragma omp parallel for ordered(2)
  for (i = 1; i < N-1; i++) {
      for (j = 1; j < N-1; j++) {
          #pragma omp ordered depend(sink: i-1,j)
          depend(sink: i,j-1)
          A[i][j] = A[i-1][j] + a[i][j-1];
          #pragma omp ordered depend(src: i,j)
      } }
  ```

- **Wavefront doall with skewing**

  ```
  #pragma omp parallel
  for (i = 2; i <= 2*N-4; i++) {
      #pragma omp for
      for (j = max(1,i-N+2); j < min(N-2,i-1); j++) {
          A[i-j][j] = A[i-j-1][j] + a[i-j][j-1];
      } }
  ```

The diagrams illustrate the parallel execution patterns:
- **: p2p sync**
- **: seq. region**
- **: all-to-all barrier**
Another Example: Jacobi-1d stencil

// Input (imperfect nest)
for (t = 0; t < time_steps; t++) {
 for (i = 1; i < n-1; i++)
 S1: b[i] = 0.33 * (a[i-1] + a[i] + a[i+1]);
 for (i = 1; i < n-1; i++)
 S2: a[i] = b[i];
}

// Stage-1: polyhedral transformation (perfect nest)
for (c1 = 0; c1 <= time_steps-1; c1++) {
 for (c3 = 1; c3 <= n-1; c3++) {
 S1: if (c3 <= n-2) b[c3] = 0.33 * (a[c3-1] + a[c3] + a[c3+1]);
 S2: if (c3 >= 2) a[c3-1] = b[c3-1];
 }
}

// Stage-2: skewing & parallelization
// - Loop nest is fully permutable
// - Doacross parallelization by OpenMP extensions
#pragma omp parallel for private(c3) ordered(2)
for (c1 = 0; c1 < time_steps; c1++) {
 for (c3 = 2*c1+1; c3 < 2*c1+n; c3++) {
 #pragma omp ordered depend(sink: c1-1,c3) depend (sink: c1,c3-1)
 S1: if (i <= n-2) b[-2*c1+c3] = 0.33*(a[-2*c1+c3-1]+a[-2*c1+c3]+a[-2*c1+c3+1]);
 S2: if (i >= 2) a[-2*c1+c3-1] = b[-2*c1+c3-1];
 #pragma omp ordered depend(source: c1,c3)
 }
}
Another Example: Jacobi-1d stencil

// Stage-2: loop tiling
#pragma omp parallel for private(c3,c5,i) ordered(2)
for (c1 = ...) {
 for (c3 = ...) {
 #pragma omp ordered depend(sink: c1-1,c3) depend(sink: c1,c3-1)
 ...
 for (c5 = ...) {
 for (c7 = ...) {
 S1: b[-2*c5+c7] = 0.33 * (a[-2*c5+c7-1] + a[-2*c5+c7] + a[-2*c5+c7+1]);
 S2: a[-2*c5+c7-1] = b[-2*c5+c7-1];
 }
 if (...) A[n-2] = B[n-2];
 }
 ...
 #pragma omp ordered depend(source: c1,c3)
 }
}

// Stage-2: register tiling (innermost by factor = 2)
...
for (c7 = ...; c7 <= (...)-1; c7+=2) {
 S1: b[-2*c5+c7] = 0.33 * (a[-2*c5+c7-1]+a[-2*c5+c7]+a[-2*c5+c7+1]);
 S2: a[-2*c5+c7-1] = b[-2*c5+c7-1];
 S1’: b[-2*c5+c7+1] = 0.33 * (a[-2*c5+c7+1-1]+a[-2*c5+c+1]+a[-2*c5+c7+1+1]);
 S2’: a[-2*c5+c7+1-1] = b[-2*c5+c7+1-1];
}
...
Experimental Setting

- **Platforms**
 - Two quad-core 2.8GHz Intel Core i7 (Nehalem) with Intel C compiler 12.0
 - Four eight-core 3.86GHz IBM Power7 with IBM XLC compiler 11.1

- **Benchmarks**
 - PolyBench-C 3.2 (22 benchmarks, standard/large dataset)

- **Comparisons**
 - PoCC : research polyhedral compiler [http://www.cs.ucla.edu/~pouchet/software/pocc]
 - PLuTo heuristic for parallelism, locality, tiling and intra-tile optimizations
 - Doall parallelism (convert doacross into wavefront doall)
 - PoCC-iterative : Iterative compilation approach [Pouchet-SC’10]
 - PoCC + empirical search for outermost fusion/distribution
 - Poly+AST : proposed integration approach
 - Doall / doacross / reduction parallelism

- **Additional results in paper, e.g., ICC and XLC**
GFLOP/s on Nehalem (doall dominant)

- PoCC \leq PoCC-iterative \leq Poly+AST
- PoCC-iterative: empirical search for fusion/distribution
- Poly+AST (polyhedral stage): DL model for fusion/dist. and permutation
GFLOP/s on Nehalem (doacross-parallel dominant)

- PoCC = PoCC-iterative \leq Poly+AST
- adi / cholesky / fdtd-2d: loop structures (e.g., fusion, perm., index-shifting)
- jacobi-2d: DOACROSS parallelization vs. wavefront doall by skewing
GFLOP/s on Nehalem (with reduction parallelism)

- PoCC \leq PoCC-iterative $<$ Poly+AST
- Reduction support to increase flexibility of loop permutation
 - Loop order w/ better locality while keeping outermost parallelism
// PoCC optimized (omitting tiling and intra-tile optimizations)
#pragma omp parallel for private(c2, c3)
for (c1 = 2; c1 <= NJ-1; c1++) {
 for (c2 = 0; c2 <= NI-1; c2++) {
 for (c3 = 0; c3 <= c1+NI-1; c3++) {
 S1: if (c3 <= c1-2) acc[c2][c1] += B[c3][c1] * A[c3][c2];
 S2: if (c2 <= c1-2 && c3 >= c1) C[c2][c1] += alpha * A[c2][-c1+c3] * B[-c1+c3][c1];
 S3: if (c3 == c1+c2) C[c2][c1] = beta * C[c2][c1] + alpha * A[c2][c2] * B[c2][c1] ...
 }
 }
}

doall accessing inner array dimensions; poor spatial locality

// Poly+AST optimized (omitting tiling and intra-tile optimizations)
#pragma omp parallel for private(c3, c5) reduction(+: acc[0:NI-1][2:NJ-1])
for (c1 = 0; c1 <= NJ-3; c1++) {
 for (c3 = 0; c3 <= NI-1; c3++) {
 for (c5 = c1 + 2; c5 <= NJ-1; c5++) {
 S1: acc[c3][c5] += B[c1][c5] * A[c1][c3];
 }
 }
}
#pragma omp parallel for private(c3, c5)
for (c1 = 0; c1 <= MAX(NI-1, NJ-3); c1++) {
 for (c3 = 0; c3 <= NI-1; c3++) {
 for (c5 = 0; c5 <= NJ-1; c5++) {
 S2: if (c5 >= c1+2) C[c1][c5] += alpha * A[c1][c3] * B[c3][c5];
 S3: if (c3 == c1) C[c1][c5] = beta * C[c1][c5] + alpha * A[c1][c1] * B[c1][c5] ...
 }
 }
}

reduction / doall accessing outer array dimensions; better spatial locality
GFLOP/s on Power7 (doall dominant)

- PoCC = PoCC-iterative ≤ Poly+AST
- Good selection of loop structures (e.g., fusion/distribution and permutation)
GFLOP/s on Power7 (doacross-parallel dominant)

- PoCC = PoCC-iterative ≤ Poly+AST
- Efficiency of DOACROSS has more impact (32-core Power7 vs. 8-core Nehalem)
GFLOP/s on Power7 (with reduction parallelism)

- Reduction reduces performance (correl, covar and symm)
- Sequential aggregation for final results is scalability bottleneck
- Future work: parallel aggregation
Take-home Message

- AST-based transformations
 - Sequence of individual loop transformations
 - Difficulty in composing the optimal sequence (i.e., phase-ordering)
- Polyhedral model
 - Unification & generalization of loop transformations
 - Difficulty in modeling cost functions for whole unified transformations
- Integration of both
 - Decoupling the optimization problem into two stages
 - Polyhedral model as first stage, AST-based as second stage
 - Simpler & customized cost modeling within stage
 - Each stage leverage its strengths
 - Geometric mean speedup vs. PoCC (polyhedral optimizer)
 - 1.62x on 8-core Nehalem / 1.49x on 32-core Power7