
COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 20 24 November, 2015

1

Transformation Frameworks
• Goal: develop a unified transformation framework in which legality testing and

code generation for different transformations can be unified
—Textbook approach: catalog of (AST-based) transformations

– Pro: Generality
– Con: each transformation needs special-case handling

—Lecture 19: polyhedral transformations
– Pro: more general than unimodular transformations (includes many cases

of loop distribution and fusion)
– Con: limited to transformation of “static control parts” (SCoP’s)

—Lecture 18: IBM ASTI optimizer
– Pro: more general than unimodular and some cases of polyhedral
– Pro: cost-based framework for automatic selection of transformations
– Con: no unified framework for combining AST-based transformations

beyond iteration-reordering, e.g., loop distribution & fusion

2

Transformation Framework Case Studies
1. IBM ASTI Optimizer

• Automatic Selection of High Order Transformations in the
IBM XL Fortran Compilers”, V. Sarkar, IBM Journal of Res.
& Dev., Vol. 41, No. 3, May 1997.

2. PolyOpt: Polyhedral + AST Optimizer

•Oil and Water Can Mix: An Integration of Polyhedral and
AST-based Transformations. Jun Shirako, Louis-Noel
Pouchet, Vivek Sarkar. IEEE Conference on High Performance
Computing, Networking, Storage and Analysis (SC'14),
November 2014.

3

High-Order Transformations

Traditional optimizations operate on a low-level intermediate

representation that is close to the machine level

High-order transformations operate on a high-level intermediate

representation that is close to the source level

Examples of high-order transformations: loop transformations,

data alignment and padding, inline expansion of procedure

calls, . . .

2

Selection of High-Order Transformations

Improperly selected high-order transformations can degrade

performance to levels worse than unoptimized code.

Traditional optimizations rarely degrade performance.

⇒ automatic selection has to be performed more carefully for

high-order transformations than for traditional optimizations

3

This Work

• Automatic selection of high-order transformations in the

IBM XL Fortran compilers

• Quantitative approach to program optimization using cost

models

• High-order transformations selected for uniprocessor target

include: loop distribution, fusion, interchange, reversal,

skewing, tiling, unrolling, and scalar replacement of array

references

• Design and initial product implementation completed during

1991–1993

Reference: “Automatic Selection of High Order Transformations in the IBM
XL Fortran Compilers”, V. Sarkar, IBM Journal of Res. & Dev., Vol. 41,
No. 3, May 1997. (To appear).

4

Structure of XL Fortran Product Compiler (Version 4)

Translation
to HIR

Input HIR

Translation
from HIR

Code augmentor

Transformed
HIR

Transformed &
augmented HIR

Transformed
intermediate
language

Interprocedural
optimizer

Optimized
intermediate
language

Optimizing
back end

Optimized
RS/6000
executable

Intermediate
Language

Fortran 90
front end

ASTI Optimizer
Analyzer

Scalarizer

Transformer

-qhot

-qipa

-O3

6

Quantitative Approach to Program Optimization

• Compiler optimization is viewed as optimization problems

based on quantitative cost models

• Cost models driven by compiler estimates of execution time

costs, memory costs, execution frequencies (obtained either

by compiler analysis or from execution profiles)

• Cost model depends on computer architecture and

computer system parameters

• Individual program transformations used in different ways to

satisfy different optimization goals

7

High level structure of the ASTI Transformer

8

Steps performed by ASTI Transformer

1. Initialization

2. Loop distribution

3. Identification of perfect loop nests

4. Reduction recognition

5. Locality optimization

6. Loop fusion

7. Loop–invariant scalar replacement

8. Loop unrolling and interleaving

9. Local scalar replacement

10. Transcription — generate transformed HIR

9

Memory Cost Analysis

Consider an innermost perfect nest of h loops:

do i1 = . . .

. . .

do ih = . . .

. . .

end do

. . .

end do

The job of memory cost analysis is to estimate

DLtotal(t1, . . . , th) = # distinct cache lines, and

DPtotal(t1, . . . , th) = # distinct pages

accessed by a (hypothetical) tile of t1 × . . . × th iterations.

10

Motivation for Memory Cost Functions

Assume that DLtotal and DPtotal are small enough so that no

collision and capacity misses occur within a tile i.e.,

DLtotal(t1, . . . , th) ≤ effective cache size

DPtotal(t1, . . . , th) ≤ effective TLB size

The memory cost is then estimated as follows:

COSTtotal = (cache miss penalty) × DLtotal +

(TLB miss penalty) × DPtotal

Our objective is to minimize the memory cost per iteration

which is given by the ratio, COSTtotal/(t1 × . . . × th).

11

Matrix Multiply-Transpose Example

real*8 a(n,n), b(n,n), c(n,n)

. . .

do i1 = 1, n

do i2 = 1, n

do i3 = 1, n

a(i1,i2) = a(i1,i2) + b(i2,i3) * c(i3,i1)

end do

end do

end do

12

Memory Cost Analysis for Matrix Multiply-Transpose

Example

Assume cache line size, L = 32 bytes:

DLtotal(t1, t2, t3) ≈ ⌈8t1/L⌉t2 + ⌈8t2/L⌉t3 + ⌈8t3/L⌉t1

≈ (1 + 8(t1 − 1)/L) t2 + (1 + 8(t2 − 1)/L) t3 +

(1 + 8(t3 − 1)/L) t1

= (0.25t1 + 0.75) t2 + (0.25t2 + 0.75) t3 +

(0.25t3 + 0.75) t1

13

Algorithm for selecting an optimized loop ordering

1. Build a symbolic expression for

F(t1, . . . , th) =
COSTtotal(t1, . . . , th)

t1 × . . . × th

2. Evaluate the h partial derivatives (slopes) of function F ,

δF/δtk , at (t1, . . . , th) = (1, . . . ,1)

A negative slope identifies a loop that carries

temporal/spatial locality

3. Desired ordering is to place loop with most negative slope

in innermost position, and so on.

14

Matrix Initialization example

do 10 i1 = 1, n

do 10 i2 = 1, n

10 a(i1,i2) = 0

For a PowerPC 604 processor:

DLtotal(t1, t2) = (0.25t1 + 0.75)t2
DPtotal(t1, t2) = (0.001953t1 + 0.998047)t2

⇒ COSTtotal(t1, t2) = 17 × DLtotal(t1, t2) + 21 × DPtotal(t1, t2)

= (4.25t1t2 + 12.75t2) + (0.04t1t2 + 20.96t2)

⇒ F(t1, t2) =
COSTtotal

t1t2
=

(

4.25 +
12.75

t1

)

+

(

0.04 +
20.96

t1

)

⇒
δF

δt1
=

−33.71

t21
is < 0 and

δF

δt2
= 0

Desired loop ordering is i2, i1
15

Transformation Framework Case Studies
1. IBM ASTI Optimizer

• Automatic Selection of High Order Transformations in the
IBM XL Fortran Compilers”, V. Sarkar, IBM Journal of Res.
& Dev., Vol. 41, No. 3, May 1997.

2. PolyOpt: Polyhedral + AST Optimizer

•Oil and Water Can Mix: An Integration of Polyhedral and
AST-based Transformations. Jun Shirako, Louis-Noel
Pouchet, Vivek Sarkar. IEEE Conference on High Performance
Computing, Networking, Storage and Analysis (SC'14),
November 2014.

4

Oil and Water Can Mix: An Integration of
Polyhedral and AST-based Transformations

SC14 - New Orleans, Louisiana
November 18th, 2014

Jun Shirako, Louis-Noel Pouchet, Vivek Sarkar

Two Views of Program Representations

6

AST (Abstract Syntax Tree) view

cond

while

func

...condinit

for

Polyhedral view

S1:
0 ≤ i ≤ n
0 ≤ j ≤ n
0 ≤ k ≤ n

S2:
0 ≤ i ≤ n
0 ≤ j ≤ n
i ≤ k ≤ n

• AST captures all input programs

• Multiple steps modify AST while
keeping the semantics

• Limited to loops whose bounds and
accesses are affine expressions

• Single mathematical operation
computes optimal solution

dependence S1 to S2:
i = i’
k = k’

...

...condinit

for

AST-based Loop Transformation Framework

7

objective-1

step-1

objective-2

step-2

objective-n

step-nAST AST’ AST’’...

Input:
AST-IR

Output:
AST-IR

• Sequence of individual loop transformations on Abstract Syntax Tree

• Including : fusion, distribution, permutation, skewing, tiling, unroll-and-jam

• Each step focuses on specific optimization objective:

• Parallelism (doall, reduction, pipeline)

• Temporal and spatial data locality

• Vectorization efficiency

• Analysis and cost model customized for each transformation

• Phase-ordering problem (which comes before/after which)

• Numerous transformations are complementary to each other

• Polyhedral model

• Algebraic framework for affine program representation and transformation

• Ability to handle everything in single stage

• Unified view that captures arbitrary loop structures

• Generalizes loop transformations as form of affine transform

• Complexity due to unification/generalization

• Hard to model cost functions for unified transformations

• Multiple objectives to be combined in a single cost model

Mathematical Approach to Unified Transformation

8

unified objective

single optimization stageIR IR’

Input:
Poly-IR

Output:
Poly-IR

• Objective : Minimization of reuse distance

• Better temporal data locality

• Outer parallelism by pushing dependences inside

Cost Model Example in Polyhedral Approaches

9

 // Input: sequence of two matmults
 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
S1: tmp[i][j] += A[i][k] * B[k][j];

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
S2: D[i][j] += C[i][k] * tmp[k][j];

i

k

j

i

k

j

S1 S2

 // Output: Minimum reuse distance
 #pragma omp parallel for private(c2, c3)
 for (c1 = 0; c1 < N; c1++) {
 for (c2 = 0; c2 < N; c2++) {
 for (c3 = 0; c3 < N; c3++)
S1: tmp[c2][c1] += A[c2][c3] * B[c3][c1];
 for (c3 = 0; c3 < N; c3++)
S2: D[c3][c1] += C[c3][c2] * tmp[c2][c1];
 } }

c31

c32

c1

c2

S1
S2

• Poor spatial data locality : not modeled in this objective

 // Output: Minimum reuse distance
 #pragma omp parallel for private(c2, c3)
 for (c1 = 0; c1 < N; c1++) {
 for (c2 = 0; c2 < N; c2++) {
 for (c3 = 0; c3 < N; c3++)
S1: tmp[c2][c1] += A[c2][c3] * B[c3][c1];
 for (c3 = 0; c3 < N; c3++)
S2: D[c3][c1] += C[c3][c2] * tmp[c2][c1];
 } }

 // Input: sequence of two matmults
 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
S1: tmp[i][j] += A[i][k] * B[k][j];

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
S2: D[i][j] += C[i][k] * tmp[k][j];

Mathematical Approach to Unified Transformation

10

unified objective

single optimization stageIR IR’

Input:
Poly-IR

Output:
Poly-IR

• Challenge : Combining multiple objectives for unified transformations

• Objectives can conflict, e.g., temporal locality (fuse loop) vs. vectorization (distribute)

• Our approach --- decouple the optimization problem into two stages
 with different cost functions:

• Global - i.e., inter-loop-nest

• Good candidate for polyhedral approach

• Unified view that captures arbitrary loop structures (perfect & imperfect nests)

• Local - i.e., per-loop-nest

• Good candidate for AST-based approach

• Well-defined sequence of transformations on perfect loop nest

Stage-1: cluster of transfo.IR IR’

Input: Intermediate:

Stage-2 : cluster of transfo. IR’’

Output:

optimization goal-1 optimization goal-2

• Poly+AST : two-stage approach to integration

• Stage-1 : Polyhedral transformations

• Finds optimal loop structures to provide sufficient data locality

• Restricted form of affine transform

• Extension of memory cost model for polyhedral model

• Output : locality-optimized loop nests

• Stage-2 : AST-based transformations

• Input : loop nests and dependences from stage-1

• Sequence of individual transformations per loop nest (w/ different objectives)

• Loop skewing (increase tilability)

• Parallelization (outermost doall / reduction / doacross)

• Loop tiling (enhance locality and granularity of parallelism)

• Intra-tile optimization (e.g., register-tiling, if-optimization, ...)

Integrating Polyhedral and AST-based Transformations

11

Outline

12

• Introduction

• Stage-1 : Cache-aware polyhedral transformations

• Stage-2 : AST-based transformations

• Experimental results vs. stage-of-the-art polyhedral compiler

• Conclusions

Polyhedral Representation of Program

13

• Iteration domain

• D Si : Set of iteration instances i = (i1, i2, ..., in) of Si

• Statement Si is enclosed in n loops

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
S1: tmp[i][j] += A[i][k] * B[k][j];

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
S2: D[i][j] += C[i][k] * tmp[k][j];

(i, j, k) ∈ D S1:

 0 ≤ i ≤ N-1
 0 ≤ j ≤ N-1
 0 ≤ k ≤ N-1

(i, j, k) ∈ D S2:

 0 ≤ i ≤ N-1
 0 ≤ j ≤ N-1
 0 ≤ k ≤ N-1

i

k

j

S1

i

k

j

S2

!(i, j, k), (i’,j’,k’)" ∈ D S1→S2:

 0 ≤ i ≤ N-1
 0 ≤ j ≤ N-1
 0 ≤ k ≤ N-1
 0 ≤ i’ ≤ N-1
 0 ≤ j’ ≤ N-1
 0 ≤ k’ ≤ N-1

i = k’
j = j’

• Dependence polyhedron

• D Si→Sj : Captures dependence from Si to Sj

• !s, t" ∈ D Si→Sj � t ∈ D Sj depends on s ∈ D Si

General Affine Program Transformation

14

ΘSi(i) =

α1,1 α1,2 ... α1,d c1

α2,1 α2,2 ... α2,d c2

αn,1 αn,2 ... αn,d cn

i1

i2

id

1

. . .
. . .

. . .
. . .

α1,1 i1 + α1,2 i2 + ... + α1,d id + c1

α2,1 i1 + α2,2 i2 + ... + α2,d id + c2

αn,1 i1 + αn,2 i2 + ... + αn,d id + cn

=

• Multi-dimensional affine transform

• ΘSi associates i with a timestamp - i.e., logical execution date (yy/mm/dd)

• Can model any composition of loop transformations including:

Loop fusion, distribution, permutation, skewing, tiling

• Legality requirements

• For all dependence polyhedra : ΘSj(t) ≻ ΘSi(s) , !s, t" ∈ D Si→Sj

.
. . .

. . .

i = (i1, i2, ..., id)T : iteration instances of statement Si

. . .

• Restricted form of affine transformations

• To focus on optimal loop structure to provide sufficient locality

• Weaker constraints can generate simple (i.e., easy-to-optimize) codes

• Subsumes the following:

• Loop fusion, distribution and code motion

• Group statements with locality into a loop

• Loop permutation

• Optimal loop order to optimize locality

• Loop reversal and index-set shifting

• Increase the opportunities of fusion/permutation

• No loop skewing (but supported in AST stage)

• Changes array access pattern, e.g., a[i][j] to a[i+j][j]

• Can miss spatial locality / affect memory cost analysis
15

Stage-1 : Cache-aware Polyhedral Transformations

Proposed Restricted Affine Transformation

16

• Restricted forms
• Odd row : constant offset βk

• Even row : linear expression of index where coefficient αk,x = ±1

• Symbols���transformations
• offset βk � fusion / distribution / code motion

• index ix � permutation

• coefficient αk,x � reversal (apply loop reversal when αk,x = -1)

• offset ck � index-set shifting

∀k, ∑ | αk,j | = 1j=1
d

ΘSi(i) =

 0 0 ... 0 β1
α1,1 α1,2 ... α1,d c1

 0 0 ... 0 βk
αk,1 αk,2 ... αk,d ck

 0 0 ... 0 βd
αd,1 αd,2 ... αd,d cd
 0 0 ... 0 βd+1

i1
i2

id

1

. . .
. . .

. . .
. . .

=
.

. . .
. . .

. . .

β1
α1,x ix + c1

βk
αk,y iy + ck

βd
α1,z iz + cd
βd+1

. . .

. . .

Cost Model to Guide Polyhedral Transfo.

17

• DL (Distinct Line) model

• Assumes loop tiling to fit data within cache/TLB

• Number of Distinct cache Lines accessed within a tile

• Total cache miss counts per tile

• Average (per-iteration) memory cost

• Defined as [total cache miss penalty per tile] / [tile size]

for ti = 0, N-1, Ti
 for tj = 0, M-1, Tj
 for tk = 0, K-1, Tk
 for i = ti, ti+Ti-1
 for j = tj, tj+Tj-1
 for k = tk, tk+Tk-1
 A[i][j] += B[k][i];

A[i][j] B[k][i]

Tj

Ti Tk

Ti

DL(Ti,Tj,Tk) = DLA(Ti,Tj,Tk) + DLB (Ti,Tj,Tk) = Ti x⎡Tj / L⎤+ Tk x⎡Ti / L⎤

mem_cost(T1, T2, ..., Td) = COSTLINE * DL(T1, T2, ..., Td) / (T1 * T2 * ... * Td)

Profitability Analysis via DL Memory Cost

• Most profitable loop permutation order

• Partial derivative of memory cost w.r.t. Tk :

• Reduction rate of memory cost when increasing Tk → Priority of permutation

• Loopk with most negative value → to be innermost position

• Best loop order = descending order of ∂mem_cost(T1, T2, ..., Td) / ∂Tk

• Profitability of loop fusion

• Comparing mem_cost(T1, T2, ..., Td) before/after fusion

• Memory cost decreased → fusion is profitable

* tentative tile size used; final tile size selected later phase

• Other criteria, e.g., parallelism, are also considered
18

∂mem_cost(T1, T2, ..., Td)

∂Tk

Affine Transformation Algorithm

19

Input : S : set of statements Si,
 PoDG : polyhedral dependence graph,
 k : current nest level, or dimension,
 niterSi : # iterators not yet scheduled in ΘSi

begin
PoDG’ := subset of PoDG w/o satisfied dependence;
SccSet := compute SCCs of PoDG’;
/* Intra-SCC transformation (permutation) */
for each SCCa ∈ SccSet do

compute permutation at level k and get constraints on reversal (αk,*) and shifting (ck);

/* Inter-SCC transformation (fusion / distribution) */
FuseSet := compute βk and get constraints on reversal and shifting;
for each Fusea ∈ FuseSet do

solve constraints on reversal and shifting and compute αk,* and ck;
if ∃Si ∈ Fusea : niterSi ≥ 1 then

recursively process the next level - i.e., k+1;
end

Output : Dimensions k ... m of schedule ΘSi

Running Example : 2mm

20

// Input: sequence of two matmults
for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
S1: tmp[i][j] += A[i][k] * B[k][j];

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
S2: D[i][j] += C[i][k] * tmp[k][j];

• Optimization policy

• Permute loops as close to the DL best order as possible

• Fuse loops if legality and profitability criteria are met

// Output: Best permutation order
for (c1 = 0; c1 < N; c1++) // c1 = i
 for (c2 = 0; c2 < N; c2++) // c2 = k
 for (c3 = 0; c3 < N; c3++) // c3 = j
S1: tmp[c1][c3] += A[c1][c2] * B[c2][c3];

for (c1 = 0; c1 < N; c1++) // c1 = i
 for (c2 = 0; c2 < N; c2++) // c2 = k
 for (c3 = 0; c3 < N; c3++) // c3 = j
S2: D[c1][c3] += C[c1][c2] * tmp[c2][c3];

tmp/D[i][j] A/C[i][k] B/tmp[k][j]
i N/A N/A temporal
j spatial temporal spatial
k temporal spatial N/A

• Output of polyhedral stage

• Locality-optimized loop nests

• Permuted with legal & profitable loop order

• Fused statements with locality into a loop

• Dependence information

• !s, t" ∈ PeSi→Sj : relationship between source and target instances s and t

• Extracted as dependence vector - i.e., d = t - s

• Input of AST-based stage

• loopk : a loop that is nested at level k ∈ {1 ... n}

• ∆loopk = {d1, d2, ..., dn} :

• Set of dependences whose source and target statements are within loopk

• Free from affine constraints in AST-based stage
21

Connection between Polyhedral and AST-based Stages

• Dependence vectors : base of analysis

• Legality : loop skewing, loop tiling, register tiling, ...

• Detection of parallelism

• Sequence of transformations in stage-2

• Loop skewing

• In order to increase permutability (i.e., applicability of tiling) and parallelism

• Coarse-grain parallelization

• Doall / reduction / doacross parallelism

• Loop tiling

• Enhance computation granularity and data locality

• Intra-tile optimizations

• Register-tiling (i.e., multi-dimensional unrolling)

22

Stage-2 : AST-based Transformation

Parallelism in Poly+AST Framework

23

• Loop permutation order

• To optimize spatial and temporal data locality

• Outermost loop is not always doall

• Also leverage other parallelism : reduction and doacross (pipeline parallelism)

• Reduction parallelism

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 S[j] += alpha * X[i][j];

for (i = 1; i < N-1; i++) {
 for (j = 0; j < N; j++) {

 C[i][j] = 0.33 * (C[i-1][j]
 + C[i][j] + C[i+1][j]);

} }

• Doacross parallelism (OpenMP 4.5)

• Doall-only approach
#pragma omp for
for (j = 0; j < N; j++)
 for (i = 0; i < N; i++)
 S[j] += alpha * X[i][j];

#pragma omp for
for (j = 0; j < N; j++)
 for (i = 1; i < N-1; i++)
 C[i][j] = 0.33 * (C[i-1][j]
 + C[i][j] + C[i+1][j]);

• Doall-only approach

#pragma omp for reduction(+: S[0:N-1])

#pragma omp for ordered(2)

#pragma omp ordered depend(sink: i-1,j)

#pragma omp ordered depend(src: i,j)

Pipeline Parallelism vs. Wavefront Doall

24

• Pipeline parallelism (OpenMP extension)
#pragma omp parallel for ordered(2)
for (i = 1; i < N-1; i++) {
 for (j = 1; j < N-1; j++) {
#pragma omp ordered depend(sink: i-1,j)
 depend(sink: i,j-1)
 A[i][j] = A[i-1][j] + a[i][j-1];
#pragma omp ordered depend(src: i,j)
} }

• Wavefront doall with skewing
#pragma omp parallel
for (i = 2; i <= 2*N-4; i++) {
#pragma omp for
 for (j = max(1,i-N+2);
 j < min(N-2,i-1); j++) {
 A[i-j][j] = A[i-j-1][j] + a[i-j][j-1];
} }

i=1 i=2 i=3 i=4
j=1

j=2

j=3

j=4

: p2p sync : seq. region

i=1 i=2 i=3 i=4
j=1

j=2

j=3

j=4

: all-to-all barrier

Another Example : Jacobi-1d stencil

25

 // Input (imperfect nest)
 for (t = 0; t < time_steps; t++) {
 for (i = 1; i < n-1; i++)
S1: b[i] = 0.33 * (a[i-1] + a[i] + a[i+1]);
 for (i = 1; i < n-1; i++)
S2: a[i] = b[i];
 }

 // Stage-1: polyhedral transformation (perfect nest)
 for (c1 = 0; c1 <= time_steps-1; c1++) {
 for (c3 = 1; c3 <= n-1; c3++) {
S1: if (c3 <= n-2) b[c3] = 0.33 * (a[c3-1] + a[c3] + a[c3+1]);
S2: if (c3 >= 2) a[c3-1] = b[c3-1];
 } }

 // Stage-2: skewing & parallelization
 // - Loop nest is fully permutable
 // - Doacross parallelization by OpenMP extensions
 #pragma omp parallel for private(c3) ordered(2)
 for (c1 = 0; c1 < time_steps; c1++) {
 for (c3 = 2*c1+1; c3 < 2*c1+n; c3++) {
 #pragma omp ordered depend(sink: c1-1,c3) depend (sink: c1,c3-1)
S1: if (i <= n-2) b[-2*c1+c3] = 0.33*(a[-2*c1+c3-1]+a[-2*c1+c3]+a[-2*c1+c3+1]);
S2: if (i >= 2) a[-2*c1+c3-1] = b[-2*c1+c3-1];
 #pragma omp ordered depend(source: c1,c3)
 } }

Another Example : Jacobi-1d stencil

26

 // Stage-2: loop tiling
 #pragma omp parallel for private(c3,c5,i) ordered(2)
 for (c1 = ...) {
 for (c3 = ...) {
 #pragma omp ordered depend(sink: c1-1,c3) depend(sink: c1,c3-1)
 ...
 for (c5 = ...) {
 if (...) B[1] = 0.33 * (A[1-1] + A[1] + A[1+1]);
 for (c7 = ...) {
S1: b[-2*c5+c7] = 0.33 * (a[-2*c5+c7-1] + a[-2*c5+c7] + a[-2*c5+c7+1]);
S2: a[-2*c5+c7-1] = b[-2*c5+c7-1];
 }
 if (...) A[n-2] = B[n-2];
 }
 ...
 #pragma omp ordered depend(source: c1,c3)
 } }

 // Stage-2: register tiling (innermost by factor = 2)
 ...
 for (c7 = ...; c7 <= (...)-1; c7+=2) {
S1: b[-2*c5+c7] = 0.33 * (a[-2*c5+c7-1]+a[-2*c5+c7]+a[-2*c5+c7+1]);
S2: a[-2*c5+c7-1] = b[-2*c5+c7-1];
S1’: b[-2*c5+c7+1] = 0.33 * (a[-2*c5+c7+1-1]+a[-2*c5+c+1]+a[-2*c5+c7+1+1]);
S2’: a[-2*c5+c7+1-1] = b[-2*c5+c7+1-1];
 }
 ...

Experimental Setting
• Platforms

• Two quad-core 2.8GHz Intel Core i7 (Nehalem) with Intel C compiler 12.0

• Four eight-core 3.86GHz IBM Power7 with IBM XLC compiler 11.1

• Benchmarks

• PolyBench-C 3.2 (22 benchmarks, standard/large dataset)

• Comparisons

• PoCC : research polyhedral compiler [http://www.cs.ucla.edu/~pouchet/software/pocc]

• PLuTo heuristic for parallelism, locality, tiling and intra-tile optimizations

• Doall parallelism (convert doacross into wavefront doall)

• PoCC-iterative : Iterative compilation approach [Pouchet-SC’10]

• PoCC + empirical search for outermost fusion/distribution

• Poly+AST : proposed integration approach

• Doall / doacross / reduction parallelism

• Additional results in paper, e.g., ICC and XLC
27

GFLOP/s on Nehalem (doall dominant)

28

• PoCC ≤ PoCC-iterative ≤ Poly+AST

• PoCC-iterative : empirical search for fusion/distribution

• Poly+AST (polyhedral stage) : DL model for fusion/dist. and permutation

G
FL

O
P/

s

0

5

10

15

20

25

30

35

40

2mm 3mm doitgen fdtd-apml gemm gesummv syr2k syrk

PoCC PoCC-iterative Poly+AST

GFLOP/s on Nehalem (doacross-parallel dominant)

29

G
FL

O
P/

s

0

5

10

15

20

25

adi cholesky fdtd-2d jacobi-1d jacobi-2d seidel-2d trisolv

PoCC PoCC-iterative Poly+AST

• PoCC = PoCC-iterative ≤ Poly+AST

• adi / cholesky / fdtd-2d : loop structures (e.g., fusion, perm., index-shifting)

• jacobi-2d : DOACROSS parallelization vs. wavefront doall by skewing

GFLOP/s on Nehalem (with reduction parallelism)

30

G
FL

O
P/

s

0

2

4

6

8

10

12

14

atax bicg correl covar gemver mvt symm

PoCC PoCC-iterative Poly+AST

• PoCC ≤ PoCC-iterative < Poly+AST

• Reduction support to increase flexibility of loop permutation

• Loop order w/ better locality while keeping outermost parallelism

Transformed Codes by PoCC and Poly+AST

31

 // Input: SYMM (simplified)
 for (i = 0; i < NI; i++) {
 for (j = 0; j < NJ; j++) {
 for (k = 0; k < j - 1; k++) {
S1: C[k][j] += alpha * A[k][i] * B[i][j];
S2: acc[i][j] += B[k][j] * A[k][i];
 }
S3: C[i][j] = beta * C[i][j] + alpha * A[i][i]* B[i][j] + alpha * acc[i][j];
 } }

 // PoCC optimized (omitting tiling and intra-tile optimizations)
 #pragma omp parallel for private(c2, c3)
 for (c1 = 2; c1 <= NJ-1; c1++) {
 for (c2 = 0; c2 <= NI-1; c2++) {
 for (c3 = 0; c3 <= c1+NI-1; c3++) {
S1: if (c3 <= c1-2) acc[c2][c1] += B[c3][c1] * A[c3][c2];
S2: if (c2 <= c1-2 && c3 >= c1) C[c2][c1] += alpha * A[c2][-c1+c3] * B[-c1+c3][c1];
S3: if (c3 == c1+c2) C[c2][c1] = beta * C[c2][c1] + alpha * A[c2][c2] * B[c2][c1] ...
 } } }

doall accessing inner array dimensions; poor spatial locality

 // Poly+AST optimized (omitting tiling and intra-tile optimizations)
 #pragma omp parallel for private(c3, c5) reduction(+: acc[0:NI-1][2:NJ-1])

 for (c1 = 0; c1 <= NJ-3; c1++) {
 for (c3 = 0; c3 <= NI-1; c3++) {
 for (c5 = c1 + 2; c5 <= NJ-1; c5++) {
S1: acc[c3][c5] += B[c1][c5] * A[c1][c3];
 } } }
 #pragma omp parallel for private(c3, c5)
 for (c1 = 0; c1 <= MAX(NI-1, NJ-3); c1++) {
 for (c3 = 0; c3 <= NI-1; c3++) {
 for (c5 = 0; c5 <= NJ-1; c5++) {
S2: if (c5 >= c1+2) C[c1][c5] += alpha * A[c1][c3] * B[c3][c5];
S3: if (c3 == c1) C[c1][c5] = beta * C[c1][c5] + alpha * A[c1][c1] * B[c1][c5] ...
 } } }

reduction / doall accessing outer array dimensions; better spatial locality

GFLOP/s on Power7 (doall dominant)

32

• PoCC = PoCC-iterative ≤ Poly+AST

• Good selection of loop structures (e.g., fusion/distribution and permutation)

G
FL

O
P/

s

0
10
20
30
40
50
60
70
80
90

100

2mm 3mm doitgen fdtd-apml gemm gesummv syr2k syrk

PoCC PoCC-iterative Poly+AST

GFLOP/s on Power7 (doacross-parallel dominant)

33

G
FL

O
P/

s

0

5

10

15

20

25

30

adi cholesky fdtd-2d jacobi-1d jacobi-2d seidel-2d trisolv

PoCC PoCC-iterative Poly+AST

• PoCC = PoCC-iterative ≤ Poly+AST

• Efficiency of DOACROSS has more impact (32-core Power7 vs. 8-core Nehalem)

GFLOP/s on Power7 (with reduction parallelism)

34

• Reduction reduces performance (correl, covar and symm)

• Sequential aggregation for final results is scalability bottleneck

• Future work : parallel aggregation

G
FL

O
P/

s

0

5

10

15

20

25

30

atax bicg correl covar gemver mvt symm

PoCC Iterative Poly+AST Poly+AST (red-off)

• AST-based transformations

• Sequence of individual loop transformations

• Difficulty in composing the optimal sequence (i.e., phase-ordering)

• Polyhedral model

• Unification & generalization of loop transformations

• Difficulty in modeling cost functions for whole unified transformations

• Integration of both

• Decoupling the optimization problem into two stages

• Polyhedral model as first stage, AST-based as second stage

• Simpler & customized cost modeling within stage

• Each stage leverage its strengths

• Geometric mean speedup vs. PoCC (polyhedral optimizer)

• 1.62x on 8-core Nehalem / 1.49x on 32-core Power7

Take-home Message

35

