
1

COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 21 1 December, 2015

2

Allen and Kennedy, Chapter 13

Compiling Array Assignments

(a.k.a. “Scalarization”)

3

Fortran 90
•  Fortran 90: successor to Fortran 77
•  Slow to gain acceptance:

— Need better/smarter compiler techniques to achieve same level of
performance as Fortran 77 compilers

•  This chapter focuses on a single new feature - the array
assignment statement: A(1:100) = 2.0
— Intended to provide direct mechanism to specify parallel/vector

execution

•  This statement must be implemented for the specific available
hardware. In an uniprocessor, the statement must be converted
to a scalar loop: Scalarization
— “Scalarization” techniques are also useful for vectorization when

array size is larger than vector width (common case)

3

4

Fortran 90
•  Range of a vector operation in Fortran 90 denoted by a triplet:

<lower bound: upper bound: increment>

 A(1:100:2) = B(2:51:1) + 3.0

•  Semantics of Fortran 90 require that for vector statements, all
inputs to the statement are fetched before any results are
stored

•  As with DO loops, the default value of the increment is 1,
i.e., B(2:51) is equivalent to B(2:51:1)

5

Outline
•  Simple scalarization
•  Safe scalarization

•  Techniques to improve on safe scalarization
— Loop reversal
— Input prefetching
— Loop splitting

•  Multidimensional scalarization
•  A framework for analyzing multidimensional scalarization

6

Scalarization

•  Replace each array assignment by a corresponding DO loop
•  Is it really that easy?

•  Two key issues:
—  Wish to avoid generating large array temporaries
—  Wish to optimize loops to exhibit good memory hierarchy

performance

7

Simple Scalarization
•  Consider the vector statement:
 A(1:200) = 2.0 * A(1:200)

•  A scalar implementation:
 S1 DO I = 1, 200

 S2 A(I) = 2.0 * A(I)

 ENDDO

•  However, some statements cause problems:
 A(2:201) = 2.0 * A(1:200)

•  If we naively scalarize, we get incorrect code:
 DO i = 1, 200

 A(i+1) = 2.0 * A(i)

 ENDDO

7

8

Scalarization Faults
•  Why do scalarization faults occur?
•  Vector operation semantics: All values from the RHS of the

assignment should be fetched before storing into the result
•  If a scalar operation stores into a location fetched by a later

operation, we get a scalarization fault

•  Principle 13.1: A vector assignment generates a scalarization
fault if and only if the scalarized loop carries a true
dependence.

•  These dependences are known as scalarization dependences
•  To preserve correctness, compiler should never produce a

scalarization dependence

8

9

Safe Scalarization
•  Naive algorithm for safe scalarization: Use temporary storage to make

sure scalarization dependences are not created
•  Consider:
 A(2:201) = 2.0 * A(1:200)

•  can be split up into:
 T(1:200) = 2.0 * A(1:200)

 A(2:201) = T(1:200)

•  Then scalarize using SimpleScalarize
 DO I = 1, 200

 T(I) = 2.0 * A(I)

 ENDDO

 DO I = 2, 201

 A(I) = T(I-1)

 ENDDO

9

10

Safe Scalarization
•  Procedure SafeScalarize implements this method of

scalarization

•  Good news:
— Scalarization always possible by using temporaries

•  Bad News:
— Substantial increase in memory use due to temporaries
— More memory operations per array element
— Akin to overheads incurred in implementing functional languages

•  We shall look at a number of techniques to reduce the effects
of these disadvantages

10

11

Loop Reversal

 A(2:256) = A(1:255) + 1.0

•  A scalarization approach using loop reversal that avoids the
need for a temporary:

 DO I = 256, 2, -1

 A(I) = A(I-1) + 1.0

 ENDDO

12

Loop Reversal
•  When can we use loop reversal?

— Loop reversal maps true dependences into antidependences
— But may also map antidependences into dependences

 A(2:257) = (A(1:256) + A(3:258)) / 2.0

•  After scalarization:
 DO I = 2, 257

 A(I) = (A(I-1) + A(I+1)) / 2.0

 ENDDO

•  Loop Reversal gets us:
 DO I = 257, 2

 A(I) = (A(I-1) + A(I+1)) / 2.0

 ENDDO

•  Thus, cannot use loop reversal in presence of antidependences
•  Goal: ensure that scalarized loop has no loop-carried true dependences

12

13

Input Prefetching

 A(2:257) = (A(1:256) + A(3:258)) / 2.0

•  Causes a scalarization fault when naively scalarized to:
 DO I = 2, 257

 A(I) = (A(I-1) + A(I+1)) / 2.0

 ENDDO

•  Problem: Stores into first element of the LHS in the previous
iteration

•  Input prefetching: Use scalar temporaries to store elements of
input and output arrays

13

14

Input Prefetching
•  A first-cut at using temporaries:
 DO I = 2, 257

 T1 = A(I-1)

 T2 = (T1 + A(I+1)) / 2.0

 A(I) = T2

 ENDDO

•  T1 holds element of input array, T2 holds element of output
array

•  But this faces the same problem. Can correct by moving
assignment to T1 into previous iteration...

14

15

Input Prefetching

 T1 = A(1)

 DO I = 2, 256

 T2 = (T1 + A(I+1)) / 2.0

 T1 = A(I)

 A(I) = T2

 ENDDO

 T2 = (T1 + A(257)) / 2.0

 A(I) = T2

•  Note: We are using scalar replacement, but the motivation for
doing so is different than in Chapter 8

15

16

Input Prefetching
•  Already seen in Chapter 8,

we need as many
temporaries as the
dependence threshold + 1.

•  Example:
 DO I = 2, 257

 A(I+2) = A(I)
+ 1.0

 ENDDO

•  Can be changed to:
 T1 = A(1)
 T2 = A(2)
 DO I = 2, 255
 T3 = T1 + 1.0
 T1 = T2
 T2 = A(I+2)
 A(I+2) = T3
 ENDDO
 T3 = T1 + 1.0
 T1 = T2
 A(258) = T3
 T3 = T1 + 1.0
 A(259) = T3

17

Input Prefetching
•  Can also unroll the loop and eliminate register to register copies

•  Principle 13.2: Any scalarization dependence with a threshold
known at compile time can be corrected by input prefetching.

18

Input Prefetching
•  Sometimes, even when a scalarization dependence does not have a

constant threshold, input prefetching can be used effectively
 A(1:N) = A(1:N) / A(1)

•  which can be naively scalarized as:
 DO i = 1, N

 A(i) = A(i) / A(1)

 ENDDO

•  true dependence from first iteration to every other iteration

•  antidependence from first iteration to itself

•  Via input prefetching, we get:
 tA1 = A(1)

 DO i = 1, N

 A(i) = A(i) / tA1

 ENDDO

18

19

Multidimensional Scalarization
•  Vector statements in Fortran 90 in more than 1 dimension:
 A(1:100, 1:100) = B(1:100, 1, 1:100)

•  corresponds to:
 DO J = 1, 100

 A(1:100, J) = B(1:100, 1, J)

 ENDDO

•  Scalarization in multiple dimensions:
 A(1:100, 1:100) = 2.0 * A(1:100, 1:100)

•  Obvious Strategy: convert each vector iterator into a loop:
 DO J = 1, 100, 1

 DO I = 1, 100

 A(I,J) = 2.0 * A(I,J)

 ENDDO

 ENDDO
19

20

Multidimensional Scalarization
•  What should the order of the loops be after scalarization?

— Familiar question: We dealt with this issue in Loop Selection/
Interchange in Chapter 5

•  Profitability of a particular configuration depends on target
architecture
— For simplicity, we shall assume shorter strides through memory are

better
— Thus, optimal choice for innermost loop is the leftmost vector

iterator

21

Loop Interchange
•  Sometimes, there is a tradeoff between scalarization and

optimal memory hierarchy usage
 A(2:100, 3:101) = A(3:101, 1:201:2)

•  If we scalarize this using the prescribed order:
 DO I = 3, 101

 DO 100 J = 2, 100

 A(J,I) = A(J+1,2*I-5)

 ENDDO

 ENDDO

•  Direction vectors for true dependences:
—  (<, >) (for I = 3, 4) and (>, >) (for I = 6, 7)

•  Cannot use loop reversal, input prefetching
•  Can use temporaries

21

22

Loop Interchange
•  However, we can use loop interchange to get:

 DO J = 2, 100

 DO I = 3, 101

 A(J,I) = A(J+1,2*I-5)

 ENDDO

 ENDDO

•  Not optimal memory hierarchy usage, but reduction of
temporary storage

•  Loop interchange is useful to reduce size of temporaries
•  It can also eliminate scalarization dependences

22

23

General Multidimensional Scalarization
•  Goal: To vectorize a single statement which has m vector

dimensions
— Given an ideal order of scalarization (l1, l2, ..., lm)
— (d1, d2, ..., dn) be direction vectors for all plausible and implausible

true dependences of the statement upon itself
— The scalarization matrix is a n ⋅ m matrix of these direction

vectors

•  For instance:
 A(1:N, 1:N, 1:N) = A(2:N+1, 1:N, 0:N-1) +

 A(0:N-1, 2:N+1, 1:N)

 > = <
 < > =

23

24

General Multidimensional Scalarization
•  If we examine any column of the direction matrix, we can

immediately see if the corresponding loop can be safely
scalarized as the outermost loop of the nest:
— If all entries of the column are = or >, it can be safely scalarized

as the outermost loop without loop reversal.
— If all entries are = or <, it can be safely scalarized with loop

reversal.
— If it contains a mixture of < and >, it cannot be scalarized by

simple means.
–  Loop skewing could work

25

•  Once a loop has been selected for scalarization, the dependences
carried by that loop, any dependence whose direction vector does not
contain a = in the position corresponding to the selected loop may be
eliminated from further consideration.

•  In our example, if we move the second column to the outside, we get:

 > = < = > <

 < > = > < =

•  Scalarization in this way will reduce the matrix to:

 > <

General Multidimensional Scalarization

25

26

Scalarization Example
 DO J = 2, N-1

 A(2:N-1,J) = A(1:N-2,J) + A(3:N,J) +

 A(2:N-1,J-1) + A(2:N-1,J+1)/4.

 ENDDO

•  Loop carried true dependence, antidependence
•  Naive compiler could generate:
 DO J = 2, N-1

 DO i = 2, N-1

 T(i-1) = (A(i-1,J) + A(i+1,J) + A(i,J-1) + A(i,J+1))/4

 ENDDO

 DO i = 2, N-1

 A(i,J) = T(i-1)

 ENDDO

 ENDDO

•  2 ⋅ (N-2)2 accesses to memory due to array T

27

Scalarization Example
•  However, can use input prefetching to get:
 DO J = 2, N-1

 tA0 = A(1, J)

 DO i = 2, N-2

 tA1 = (tA0+A(i+1,J)+A(i,J-1)+A(i,J+1))/4

 tA0 = A(i-1, J)

 A(i,J) = tA1

 ENDDO

 tA1 = (tA0+A(N,J)+A(N-1,J-1)+A(N-1,J+1))/4

 A(N-1,J) = tA1

 ENDDO

•  If temporaries are allocated to registers, no more memory accesses
than original Fortran 90 program

27

28

Post Scalarization Issues
•  Issues due to scalarization:

— Generates many individual loops
— These loops carry no dependences. So reuse of quantities in

registers is not common

•  Solution: Use loop interchange, loop fusion, unroll-and-jam, and
scalar replacement

28

