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Allen and Kennedy, Chapter 13 

Compiling Array Assignments 
 

(a.k.a. “Scalarization”) 
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Fortran 90
•  Fortran 90: successor to Fortran 77 
•  Slow to gain acceptance: 

— Need better/smarter compiler techniques to achieve same level of 
performance as Fortran 77 compilers 

•  This chapter focuses on a single new feature - the array 
assignment statement:    A(1:100) = 2.0 
— Intended to provide direct mechanism to specify parallel/vector 

execution 

•  This statement must be implemented for the specific available 
hardware. In an uniprocessor, the statement must be converted 
to a scalar loop: Scalarization 
— “Scalarization” techniques are also useful for vectorization when 

array size is larger than vector width (common case) 
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Fortran 90
•  Range of a vector operation in Fortran 90 denoted by a triplet: 

<lower bound: upper bound: increment> 

   A(1:100:2) = B(2:51:1) + 3.0 

•  Semantics of Fortran 90 require that for vector statements, all 
inputs to the statement are fetched before any results are 
stored 

•  As with DO loops, the default value of the  increment is 1, 
i.e., B(2:51) is equivalent to B(2:51:1) 
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Outline
•  Simple scalarization 
•  Safe scalarization 

•  Techniques to improve on safe scalarization 
— Loop reversal 
— Input  prefetching 
— Loop splitting 

•  Multidimensional scalarization 
•  A framework for analyzing multidimensional scalarization 
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Scalarization

•  Replace each array assignment by a corresponding DO loop 
•  Is it really that easy?  

•  Two key issues: 
—   Wish to avoid generating large array temporaries 
—   Wish to optimize loops to exhibit good memory hierarchy 

performance 
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Simple Scalarization
•  Consider the vector statement: 
   A(1:200) = 2.0 * A(1:200) 

•  A scalar implementation: 
  S1  DO I = 1, 200 

  S2      A(I) = 2.0 * A(I) 

    ENDDO 

•  However, some statements cause problems: 
   A(2:201) = 2.0 * A(1:200) 

•  If we naively scalarize, we get incorrect code: 
   DO i = 1, 200 

    A(i+1) = 2.0 * A(i) 

   ENDDO 
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Scalarization Faults
•  Why do scalarization faults occur? 
•  Vector operation semantics: All values from the RHS of the 

assignment should be fetched before storing into the result 
•  If a scalar operation stores into a location fetched by a later 

operation, we get a scalarization fault 

•  Principle 13.1: A vector assignment generates a scalarization 
fault if and only if the scalarized loop carries a true 
dependence. 

•  These dependences are known as scalarization dependences 
•  To preserve correctness, compiler should never produce a 

scalarization dependence 
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Safe Scalarization
•  Naive algorithm for safe scalarization: Use temporary storage to make 

sure scalarization dependences are not created 
•  Consider: 
  A(2:201) = 2.0 * A(1:200) 

•  can be split up into: 
  T(1:200) = 2.0 * A(1:200) 

  A(2:201) = T(1:200) 

•  Then scalarize using SimpleScalarize 
  DO I = 1, 200 

   T(I) = 2.0 * A(I) 

  ENDDO 

  DO I = 2, 201 

   A(I) = T(I-1) 

  ENDDO 
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Safe Scalarization
•  Procedure SafeScalarize implements this method of 

scalarization 

•  Good news:  
— Scalarization always possible by using temporaries 

•  Bad News: 
— Substantial increase in memory use due to temporaries 
— More memory operations per array element 
— Akin to overheads incurred in implementing functional languages 

•  We shall look at a number of techniques to reduce the effects 
of these disadvantages 
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Loop Reversal

  A(2:256) = A(1:255) + 1.0 

 

•  A scalarization approach using loop reversal that avoids the 
need for a temporary: 

  DO I = 256, 2, -1 

   A(I) = A(I-1) + 1.0 

  ENDDO 
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Loop Reversal
•  When can we use loop reversal? 

— Loop reversal maps true dependences into antidependences 
— But may also map antidependences into dependences 

  A(2:257) = ( A(1:256) + A(3:258) ) / 2.0 

•  After scalarization: 
  DO I = 2, 257 

     A(I) = ( A(I-1) + A(I+1) ) / 2.0 

  ENDDO 

•  Loop Reversal gets us: 
  DO I = 257, 2 

     A(I) = ( A(I-1) + A(I+1) ) / 2.0 

  ENDDO 

•  Thus, cannot use loop reversal in presence of antidependences 
•  Goal: ensure that scalarized loop has no loop-carried true dependences 
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Input Prefetching

  A(2:257) = ( A(1:256) + A(3:258) ) / 2.0 

•  Causes a scalarization fault when naively scalarized to: 
  DO I = 2, 257 

     A(I) = ( A(I-1) + A(I+1) ) / 2.0 

  ENDDO 

•  Problem: Stores into first element of the LHS in the previous 
iteration 

•  Input prefetching: Use scalar temporaries to store elements of 
input and output arrays 
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Input Prefetching
•  A first-cut at using temporaries:  
   DO I = 2, 257 

      T1 = A(I-1) 

      T2 = ( T1 + A(I+1) ) / 2.0 

      A(I) = T2 

   ENDDO 

•  T1 holds element of input array, T2 holds element of output 
array 

•  But this faces the same problem. Can correct by moving 
assignment to T1 into previous iteration... 
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Input Prefetching
    

   T1 = A(1) 

   DO I = 2, 256 

      T2 = ( T1 + A(I+1) ) / 2.0 

      T1 = A(I) 

      A(I) = T2 

   ENDDO 

   T2 = ( T1 + A(257) ) / 2.0 

   A(I) = T2 

•  Note: We are using scalar replacement, but the motivation for 
doing so is different than in Chapter 8 
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Input Prefetching
•  Already seen in Chapter 8, 

we need as many 
temporaries as the 
dependence threshold + 1. 

•  Example: 
   DO I = 2, 257 

      A(I+2) = A(I) 
+ 1.0 

     ENDDO 

•  Can be changed to: 
   T1 = A(1) 
   T2 = A(2) 
   DO I = 2, 255 
      T3 = T1 + 1.0  
      T1 = T2 
      T2 = A(I+2)  
      A(I+2) = T3  
   ENDDO 
   T3 = T1 + 1.0 
   T1 = T2 
   A(258) = T3 
   T3 = T1 + 1.0 
   A(259) = T3 
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Input Prefetching
•  Can also unroll the loop and eliminate register to register copies 

•  Principle 13.2: Any scalarization dependence with a threshold 
known at compile time can be corrected by input prefetching. 
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Input Prefetching
•  Sometimes, even when a scalarization dependence does not have a 

constant threshold, input prefetching can be used effectively 
   A(1:N) = A(1:N) / A(1) 

•  which can be naively scalarized as: 
   DO i = 1, N 

      A(i) = A(i) / A(1) 

   ENDDO 

•  true dependence from first iteration to every other iteration 

•  antidependence from first iteration to itself 

•  Via input prefetching, we get: 
   tA1 = A(1) 

   DO i = 1, N 

      A(i) = A(i) / tA1 

   ENDDO 
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Multidimensional Scalarization
•  Vector statements in Fortran 90 in more than 1 dimension: 
  A(1:100, 1:100) = B(1:100, 1, 1:100) 

•  corresponds to: 
  DO J = 1, 100 

    A(1:100, J) = B(1:100, 1, J) 

  ENDDO 

•  Scalarization in multiple dimensions: 
  A(1:100, 1:100) = 2.0 * A(1:100, 1:100) 

•  Obvious Strategy: convert each vector iterator into a loop: 
  DO J = 1, 100, 1 

    DO I = 1, 100 

      A(I,J) = 2.0 * A(I,J) 

    ENDDO 

  ENDDO 
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Multidimensional Scalarization
•  What should the order of the loops be after scalarization? 

— Familiar question: We dealt with this issue in Loop Selection/
Interchange in  Chapter 5 

•  Profitability of a particular configuration depends on target 
architecture 
— For simplicity, we shall assume shorter strides through memory are 

better 
— Thus, optimal choice for innermost loop is the leftmost vector 

iterator 
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Loop Interchange
•  Sometimes, there is a tradeoff between scalarization and 

optimal memory hierarchy usage 
 A(2:100, 3:101) = A(3:101, 1:201:2) 

•  If we scalarize this using the prescribed order: 
  DO I = 3, 101 

    DO 100 J = 2, 100 

      A(J,I) = A(J+1,2*I-5) 

    ENDDO 

  ENDDO 

•  Direction vectors for true dependences: 
—  (<, >) (for I = 3, 4) and (>, >) (for I = 6, 7) 

•  Cannot use loop reversal, input prefetching 
•  Can use temporaries 
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Loop Interchange
•  However, we can use loop interchange to get: 
 
  DO J = 2, 100 

    DO I = 3, 101 

      A(J,I) = A(J+1,2*I-5) 

    ENDDO 

  ENDDO 

•  Not optimal memory hierarchy usage, but reduction of 
temporary storage 

•  Loop interchange is useful to reduce size of temporaries 
•  It can also eliminate scalarization dependences 
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General Multidimensional Scalarization
•  Goal: To vectorize a single statement which has m vector 

dimensions  
— Given an ideal order of scalarization (l1, l2, ..., lm)  
— (d1, d2, ..., dn) be direction vectors for all plausible and implausible 

true dependences of the statement upon itself 
— The scalarization matrix is a n ⋅ m matrix of these direction 

vectors 

•  For instance: 
   A(1:N, 1:N, 1:N) = A(2:N+1, 1:N, 0:N-1) +  

             A(0:N-1, 2:N+1, 1:N) 

      
           >           =          < 
             <      >          = 
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General Multidimensional Scalarization
•  If we examine any column of the direction matrix, we can 

immediately see if the corresponding loop can be safely 
scalarized as the outermost loop of the nest: 
— If all entries of the column are = or >, it can be safely scalarized 

as the outermost loop without loop reversal. 
— If all entries are = or <, it can be safely scalarized with loop 

reversal. 
— If it contains a mixture of < and >, it cannot be scalarized by 

simple means. 
–  Loop skewing could work 
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•  Once a loop has been selected for scalarization, the dependences 
carried by that loop, any dependence whose direction vector does not 
contain a = in the position corresponding to the selected loop may be 
eliminated from further consideration. 

•  In our example, if we move the second column to the outside, we get: 

       >    =    <             =    >    <  

      <    >    =        >    <    = 

 

 

•  Scalarization in this way will reduce the matrix to: 

                   >   < 

General Multidimensional Scalarization
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Scalarization Example
  DO J = 2, N-1 

     A(2:N-1,J) = A(1:N-2,J) + A(3:N,J) +  

                  A(2:N-1,J-1) + A(2:N-1,J+1)/4. 

  ENDDO 

•  Loop carried true dependence, antidependence 
•  Naive compiler could generate: 
  DO J = 2, N-1 

    DO i = 2, N-1 

      T(i-1) = (A(i-1,J) + A(i+1,J) + A(i,J-1) + A(i,J+1) )/4 

    ENDDO 

    DO i = 2, N-1 

      A(i,J) = T(i-1) 

    ENDDO 

  ENDDO 

•  2 ⋅ (N-2)2 accesses to memory due to array T 
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Scalarization Example
•  However, can use input prefetching to get: 
  DO J = 2, N-1 

    tA0 = A(1, J) 

    DO i = 2, N-2 

      tA1 = (tA0+A(i+1,J)+A(i,J-1)+A(i,J+1))/4 

      tA0 = A(i-1, J) 

      A(i,J) = tA1 

    ENDDO 

    tA1 = (tA0+A(N,J)+A(N-1,J-1)+A(N-1,J+1))/4 

    A(N-1,J) = tA1 

  ENDDO 

•  If temporaries are allocated to registers, no more memory accesses 
than original Fortran 90 program 
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Post Scalarization Issues
•  Issues due to scalarization: 

— Generates many individual loops 
— These loops carry no dependences. So reuse of quantities in 

registers is not common 

•  Solution: Use loop interchange, loop fusion, unroll-and-jam, and 
scalar replacement 
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