End-semester Summary

Exam 2 scope: Chapters 7, 8, 9, 13 of Allen and Kennedy book
Control Dependences

Chapter 7
Control Dependences

- **Constraints posed by control flow**

  ```
  DO 100 I = 1, N
  S1    IF (A(I-1).GT. 0.0) GO TO 100
  S2    A(I) = A(I) + B(I)*C
  100 CONTINUE
  ```

 If we vectorize by...

  ```
  S2  A(1:N) = A(1:N) + B(1:N)*C
  DO 100 I = 1, N
  S1    IF (A(I-1).GT. 0.0) GO TO 100
  100 CONTINUE
  ```

 ...we get the wrong answer

- **We are missing dependences**

- **There is a dependence from S\textsubscript{1} to S\textsubscript{2} – a control dependence**
Branch removal for If-conversion

- **Basic idea:**
 - Make a pass through the program.
 - Maintain a Boolean expression cc that represents the condition that must be true for the current expression to be executed.
 - On encountering a branch, conjoin the controlling expression into cc.
 - On encountering a target of a branch, its controlling expression is disjoined into cc.
Branch Removal: Forward Branches

- Remove forward branches by inserting appropriate guards

```fortran
DO 100 I = 1,N
C1    IF (A(I).GT.10) GO TO 60
20    A(I) = A(I) + 10
C2    IF (B(I).GT.10) GO TO 80
40    B(I) = B(I) + 10
60    A(I) = B(I) + A(I)
80    B(I) = A(I) - 5
ENDDO

==> DO 100 I = 1,N
    m1 = A(I).GT.10
20    IF(.NOT.m1) A(I) = A(I) + 10
    IF(.NOT.m1) m2 = B(I).GT.10
40    IF(.NOT.m1.AND..NOT.m2) B(I) = B(I) + 10
60    IF(.NOT.m1.AND..NOT.m2.OR.m1)A(I) = B(I) + A(I)
80    IF(.NOT.m1.AND..NOT.m2.OR..NOT.m1
    AND.m2) B(I) = A(I) - 5
ENDDO
```
Branch Removal: Forward Branches

• **We can simplify to:**

```plaintext
DO 100 I = 1,N
    m1 = A(I).GT.10
20   IF(.NOT.m1) A(I) = A(I) + 10
    IF(.NOT.m1) m2 = B(I).GT.10
40   IF(.NOT.m1.AND..NOT.m2)
        B(I) = B(I) + 10
60   IF(m1.OR..NOT.m2)
        A(I) = B(I) + A(I)
80   B(I) = A(I) - 5
ENDDO
```

• **and then vectorize to:**

```plaintext
m1(1:N) = A(1:N).GT.10
20   WHERE(.NOT.m1(1:N)) A(1:N) = A(1:N) + 10
    WHERE(.NOT.m1(1:N)) m2(1:N) = B(1:N).GT.10
40   WHERE(.NOT.m1(1:N).AND..NOT.m2(1:N)) B(1:N) = B(1:N) + 10
60   WHERE(m1(1:N).OR..NOT.m2(1:N)) A(1:N) = B(1:N) + A(1:N)
80   B(1:N) = A(1:N) - 5
```
do {
 S1;
 if (C1) continue;
 do {
 S2;
 } while (C2);
 S3;
} while (C3);
Examples of Dominator and Postdominator Trees

CONTROL FLOW GRAPH

DOMINATOR TREE

POST–DOMINATOR TREE
Control Dependence: Definition

Node Y is \textit{control dependent} on node X with label L in CFG if and only if

1. there exists a nonnull path $X \rightarrow Y$, starting with the edge labeled L, such that Y post-dominates every node, W, strictly between X and Y in the path, and

2. Y does not post-dominate X.

Example: Acyclic CFG and its Control Dependence Graph (CDG)
A node x in directed graph G with a single exit node postdominates node y in G if any path from y to the exit node of G must pass through x.

A statement y is said to be control dependent on another statement x if:
- there exists a non-trivial path from x to y such that every statement $z \neq x$ in the path is postdominated by y and
- x is not postdominated by y.

In other words, a control dependence exists from S_1 to S_2 if one branch out of S_1 forces execution of S_2 and another doesn’t.

Note that control dependences also can be seen as a property of basic blocks (depends on CFG granularity).
Compiler Improvement of Register Usage

Chapter 8
Scalar Replacement (Recap)

- **Example:** Scalar Replacement in case of loop carried dependence spanning multiple iterations

  ```
  DO I = 1, N
  A(I) = B(I-1) + B(I+1)
  ENDDO
  ```

  ```
  t1 = B(0)
  t2 = B(1)
  t3 = B(I+1)
  A(I) = t1 + t3
  t1 = t2
  t2 = t3
  ENDDO
  ```

- One fewer load for each iteration for reference to B which had a loop carried input dependence spanning 2 iterations

- Invariants maintained were:

 t1=B(I-1); t2=B(I); t3=B(I+1)
Eliminate Scalar Copies by unrolling

\[t1 = B(0) \]
\[t2 = B(1) \]

DO I = 1, N
\[t3 = B(I+1) \]
\[A(I) = t1 + t3 \]
\[t1 = t2 \]
\[t2 = t3 \]
ENDDO

- Unnecessary register-register copies
- Unroll loop 3 times

Preloop

\[t1 = B(0) \]
\[t2 = B(1) \]
\[mN3 = \text{MOD}(N, 3) \]

DO I = 1, mN3
\[t3 = B(I+1) \]
\[A(I) = t1 + t3 \]
\[t1 = t2 \]
\[t2 = t3 \]
ENDDO

Main Loop

DO I = mN3 + 1, N, 3
\[t3 = B(I+1) \]
\[A(I) = t1 + t3 \]
\[t1 = B(I+2) \]
\[A(I+1) = t2 + t1 \]
\[t2 = B(I+3) \]
\[A(I+2) = t3 + t2 \]
ENDDO
Pruning the dependence graph

- Prune all anti dependence edges
- Prune flow and input dependence edges that do not represent a potential reuse
- Prune redundant input dependence edges
- Prune output dependence edges after rest of the pruning is done
Pruning the dependence graph

• Example: Eliminate killed dependences
 — When killed dependence is a flow dependence

 S1: \(A(I+1) = \ldots \)

 S2: \(A(I) = \ldots \)

 S3: \(\ldots = A(I) \)

 - Store in S2 is a killing store. Flow dependence from S1 to S3 is pruned

 — When killed dependence is an input dependence

 S1: \(\ldots = A(I+1) \)

 S2: \(A(I) = \ldots \)

 S3: \(\ldots = A(I-1) \)

 - Store in S2 is a killing store. Input dependence from S1 to S3 is pruned
Unroll-and-Jam

DO I = 1, N*2
 DO J = 1, M
 A(I) = A(I) + B(J)
 ENDDO
ENDDO

DO I = 1, N*2, 2
 DO J = 1, M
 A(I) = A(I) + B(J)
 A(I+1) = A(I+1) + B(J)
 ENDDO
ENDDO

• Can we achieve reuse of references to B?
• Use transformation called Unroll-and-Jam

• Unroll outer loop twice and then fuse the copies of the inner loop
• Brought two uses of B(J) together
Unroll-and-Jam

DO I = 1, N*2, 2
 DO J = 1, M
 A(I) = A(I) + B(J)
 A(I+1) = A(I+1) + B(J)
 ENDDO
ENDDO

• Apply scalar replacement on this code

 DO I = 1, N*2, 2
 s0 = A(I)
 s1 = A(I+1)
 DO J = 1, M
 t = B(J)
 s0 = s0 + t
 s1 = s1 + t
 ENDDO
 A(I) = s0
 A(I+1) = s1
 ENDDO

• Half the number of loads as the original program
Legality of Unroll-and-Jam

• **Is unroll-and-jam always legal?**

```fortran
DO I = 1, N*2
    DO J = 1, M
        A(I+1,J-1) = A(I,J) + B(I,J)
        A(I+2,J-1) = A(I+1,J) + B(I+1,J)
    ENDDO
ENDDO
```

• **Apply unroll-and-jam**

• **This is wrong!!!**
Legality of Unroll-and-Jam
Legality of Unroll-and-Jam

• Direction vector in this example was (<,>)
 – This makes loop interchange illegal
 – Unroll-and-Jam is loop interchange followed by unrolling inner loop
 followed by another loop interchange

• But does loop interchange illegal imply unroll-and-jam illegal? NO
Legality of Unroll-and-Jam

• Consider this example

DO I = 1, N*2
 DO J = 1, M
 A(I+2,J-1) = A(I,J) + B(I,J)
 ENDDO
ENDDO

• Direction vector is (<,>); still unroll-and-jam possible because of distances involved
Conditions for legality of unroll-and-jam

- **Definition**: Unroll-and-jam to factor n consists of unrolling the outer loop $n-1$ times and fusing those copies together.

- **Theorem**: An unroll-and-jam to a factor of n is legal iff there exists no dependence with direction vector $(<,>)$ such that the distance for the outer loop is less than n.
Conclusion

• We have learned two memory hierarchy transformations:
 — scalar replacement
 — unroll-and-jam

• They reduce the number of memory accesses by increasing use of processor registers
Managing Cache

Allen and Kennedy, Chapter 9
Review: How do set-associative caches work?
Loop Blocking (Tiling)

- \(\text{DO } J = 1, \ M \)
 \(\text{DO } I = 1, \ N \)
 \(D(I) = D(I) + B(I,J) \)
 ENDDO
 ENDDO

\(\frac{NM}{b} \) misses for each of arrays B and D

==> total of \(2NM/b \) misses

\(b \) = block (line) size in words (elements)

Assume that \(N \) is large enough for elements of D to overflow cache
Blocking loop I

- After strip-mine-and-interchange

\[
\text{DO II = 1, N, S}
\]

\[
\text{DO J = 1, M}
\]

\[
\text{DO I = II, MIN(II+S-1, N)}
\]

\[
D(I) = D(I) + B(I,J)
\]

ENDDO
ENDDO
ENDDO

\[
\text{NM/b + N/b = (1 + 1/M) NM / b misses}
\]

Assume that \(S \) is \(\geq b \) and is also small enough to allow \(S \) elements of \(D \) to be held in cache for all iterations of the \(J \) loop.
Blocking Loop J

- DO J = 1, M, T
 DO I = 1, N
 DO jj = J, MIN(J+T-1, M)
 D(I) = D(I) + B(I, jj)
 ENDDO
 ENDDO
ENDDO

NM/b misses for array B (if T is small enough)
(N/b)*(M/T) misses for array D

==> Total of (1 + 1/T) NM/b misses
Legality of Blocking

- Every direction vector for a dependence carried by any of the loops $L_0...L_{k+1}$ has either an "=" or a "<" in the kth position.

- Conservative testing

![Diagram](image.png)
Summary

• Two different kind of reuse
 — Temporal reuse
 — Spatial reuse

• Strategies to increase the two reuse
 — Loop Interchange
 — Cache Blocking
Compiling Array Assignments

Allen and Kennedy, Chapter 13
• Range of a vector operation in Fortran 90 denoted by a triplet: <lower bound: upper bound: increment>

\[A(1:100:2) = B(2:51:1) + 3.0 \]

• Semantics of Fortran 90 require that for vector statements, all inputs to the statement are fetched before any results are stored.

• As with DO loops, the default value of the increment is 1, i.e., \(B(2:51) \) is equivalent to \(B(2:51:1) \)
Safe Scalarization

- Naive algorithm for safe scalarization: Use temporary storage to make sure scalarization dependences are not created

- Consider:

 \[A(2:201) = 2.0 \times A(1:200) \]

- can be split up into:

 \[T(1:200) = 2.0 \times A(1:200) \]

 \[A(2:201) = T(1:200) \]

- Then scalarize using SimpleScalarize

  ```
  DO I = 1, 200
      T(I) = 2.0 \times A(I)
  ENDDO
  
  DO I = 2, 201
      A(I) = T(I-1)
  ENDDO
  ```
Loop Reversal

\[A(2:256) = A(1:255) + 1.0 \]

- A scalarization approach using loop reversal that avoids the need for a temporary:

\[
\begin{align*}
\text{DO } I & = 256, 2, -1 \\
A(I) & = A(I-1) + 1.0 \\
\text{ENDDO}
\end{align*}
\]
Loop Reversal

• **When can we use loop reversal?**
 - Loop reversal maps true dependences into antidependences
 - But **may** also map antidependences into true dependences
 \[A(2:257) = \frac{A(1:256) + A(3:258)}{2.0} \]

• **After scalarization:**

 \[
 \text{DO } I = 2, 257 \\
 A(I) = \frac{A(I-1) + A(I+1)}{2.0} \\
 \text{ENDDO}
 \]

• **Loop Reversal gets us:**

 \[
 \text{DO } I = 257, 2 \\
 A(I) = \frac{A(I-1) + A(I+1)}{2.0} \\
 \text{ENDDO}
 \]

• **Thus, cannot use loop reversal in presence of antidependences**
• **Goal:** ensure that scalarized loop has no loop-carried true dependences
Multidimensional Scalarization

• Vector statements in Fortran 90 in more than 1 dimension:
 \[A(1:100, 1:100) = B(1:100, 1, 1:100) \]

• corresponds to:
 \[
 \begin{align*}
 &\text{DO } J = 1, 100 \\
 &\hspace{1cm} A(1:100, J) = B(1:100, 1, J) \\
 &\text{ENDDO}
 \end{align*}
 \]

• Scalarization in multiple dimensions:
 \[A(1:100, 1:100) = 2.0 * A(1:100, 1:100) \]

• Obvious Strategy: convert each vector iterator into a loop:
 \[
 \begin{align*}
 &\text{DO } J = 1, 100, 1 \\
 &\hspace{1cm} \text{DO } I = 1, 100 \\
 &\hspace{2cm} A(I, J) = 2.0 * A(I, J) \\
 &\hspace{1cm} \text{ENDDO} \\
 &\text{ENDDO}
 \end{align*}
 \]
Multidimensional Scalarization

• What should the order of the loops be after scalarization?
 – Familiar question: We dealt with this issue in Loop Selection/Interchange in Chapter 5

• Profitability of a particular configuration depends on target architecture
 – For simplicity, we shall assume shorter strides through memory are better
 – Thus, optimal choice for innermost loop is the leftmost vector iterator
Loop Interchange

- Sometimes, there is a tradeoff between scalarization and optimal memory hierarchy usage
 \[A(2:100, 3:101) = A(3:101, 1:201:2) \]

- If we scalarize this using the prescribed order:

 DO I = 3, 101
 DO 100 J = 2, 100
 A(J,I) = A(J+1,2*I-5)
 ENDDO
 ENDDO

- Direction vectors for true dependences:
 - (\(<, >\)) (for I = 3, 4) and (\(>, >\)) (for I = 6, 7)

- Cannot use loop reversal, input prefetching

- Can use temporaries
Loop Interchange

• However, we can use loop interchange to get:

```
DO J = 2, 100
  DO I = 3, 101
    A(J,I) = A(J+1,2*I-5)
  ENDDO
ENDDO
```

• Not optimal memory hierarchy usage, but reduction of temporary storage

• Loop interchange is useful to reduce size of temporaries

• It can also eliminate scalarization dependences
Scalarization Example

\[
\begin{align*}
\text{DO } J & = 2, N-1 \\
\end{align*}
\]

- Loop carried true dependence, antidependence
- Naive compiler could generate:

\[
\begin{align*}
\text{DO } J & = 2, N-1 \\
\text{DO } i & = 2, N-1 \\
T(i-1) & = (A(i-1,J) + A(i+1,J) + A(i,J-1) + A(i,J+1))/4 \\
\text{ENDDO} \\
\text{DO } i & = 2, N-1 \\
A(i,J) & = T(i-1) \\
\text{ENDDO} \\
\text{ENDDO}
\end{align*}
\]

- \(2 \cdot (N-2)^2\) accesses to memory due to array \(T\)
Scalarization Example

• However, can use input prefetching to get:

\[
\text{DO } J = 2, N-1
\]
\[
\begin{align*}
tA0 &= A(1, J) \\
\text{DO } i = 2, N-2 \\
tA1 &= \frac{(tA0 + A(i+1, J) + A(i, J-1) + A(i, J+1))}{4} \\
tA0 &= A(i-1, J) \\
A(i, J) &= tA1
\end{align*}
\]
\[
\text{ENDDO}
\]
\[
\begin{align*}
tA1 &= \frac{(tA0 + A(N, J) + A(N-1, J-1) + A(N-1, J+1))}{4} \\
A(N-1, J) &= tA1
\end{align*}
\]
\[
\text{ENDDO}
\]

• If temporaries are allocated to registers, no more memory accesses than original Fortran 90 program
Exam 2

• Take-home exam (3 hours)
 – Open book: open book, open notes, no other resources
 – Scope of exam is limited to chapters 7, 8, 9, 13
 – Exam will be made available today, and will be due by 4pm on Friday, Dec 10th