COMP 515: Advanced Compilation for
Vector and Parallel Processors

COMP 515

Vivek Sarkar

Department of Computer Science
Rice University
vsarkar@rice.edu

http://www.cs.rice.edu/~vsarkar/comp515

Lecture 22 3 December, 2015

End-semester Summary

Exam 2 scope: Chapters 7, 8, 9, 13 of Allen and Kennedy book

Control Dependences

Chapter 7

Control Dependences

 Constraints posed by control flow

DO 100 I =1, N
. IF (A(I-1).GT. 0.0) GO TO 100 S2 61 f;’1
S, A(I) = A(I) + B(I)*C

S

100 CONTINUE

If we vectorize by...
S A(l:N) = A(1l:N) + B(1l:N)*C

DO 100 I = 1, N
IF (A(I-1).GT. 0.0) GO TO 100

2

Sy

100 CONTINUE
..we get the wrong answer
« We are missing dependences

« There is a dependence from S, to S, - a control dependence

4

Branch removal for If-conversion

 Basic idea:
— Make a pass through the program.

— Maintain a Boolean expression cc that represents the condition that
must be true for the current expression to be executed

— On encountering a branch, conjoin the controlling expression into cc

—On encountering a target of a branch, its controlling expression is
disjoined into cc

Branch Removal: Forward Branches

« Remove forward branches by inserting appropriate guards

DO 100 T = 1,N

C, IF (A(I).GT.10) GO TO 60
20 A(I) = A(I) + 10
C, IF (B(I).GT.10) GO TO 80
40 B(I) = B(I) + 10
60 A(I) = B(I) + A(I)
80 B(I) = A(I) - 5
ENDDO
==>
DO 100 I = 1,N
ml = A(I).GT.10
20 IF(.NOT.ml1l) A(I) = A(I) + 10
IF(.NOT.ml) m2 = B(I).GT.10
40 IF(.NOT.ml.AND..NOT.m2) B(I) = B(I) + 10
60 IF(.NOT.ml.AND..NOT.m2.0R.m1)A(I) = B(I) + A(I)
80 IF(.NOT.ml.AND..NOT.m2.0R.ml1l.0OR..NOT.ml

_AND.m2) B(I) = A(I) - 5
ENDDO
6

Branch Removal: Forward Branches

* We can simplify to:
DO 100 I = 1,N
ml = A(I).GT.10

20 ITF(.NOT.ml) A(I) = A(I) + 10
TF(.NOT.ml) m2 = B(I).GT.10
40 ITF(.NOT.ml.AND..NOT.m2)
B(I) = B(I) + 10
60 TF(ml.0OR..NOT.m2)

A(I) = B(I) + A(I)
80 B(I) = A(I) - 5
ENDDO

« and then vectorize to:
ml(l:N) = A(1:N).GT.10
20 WHERE (.NOT.ml (1:N)) A(1:N) = A(1:N) + 10
WHERE (.NOT.ml1 (1:N)) m2(1:N) = B(1:N).GT.10
40 WHERE (.NOT.m1 (1:N) .AND..NOT.m2(1:N)) B(1l:N) = B(1l:N) + 10
00 WHERE (m1 (1:N) .OR..NOT.m2 (1:N)) A(1:N) = B(1l:N) + A(1l:N)
80 B(l1:N) = A(1:N) - 5

Control Flow Graph: Example

START
T F
do { .
S1; T -
if (C1) continue;
2
do {
T F
S2; ¢
} while (C2); 3
S3; T *F
} while (C3); STOP
CONTROL FLOW GRAPH

Examples of Dominator and
Postdominator Trees

CONTROL FLOW GRAPH

STOP

/

3

/

2

yd

1

AN

START

POST-DOMINATOR TREE

START

y

1

/

2

/

3

AN

STOP

DOMINATOR TREE

Control Dependence: Definition

Node Y is control dependent on node X with label L in CFG if
and only if

1. there exists a nonnull path X — Y, starting with the edge
labeled L, such that Y post-dominates every node, W,
strictly between X and Y in the path, and

2. Y does not post-dominate X.

Reference: “The Program Dependence Graph and its Use in
Optimization”, J. Ferrante et al, ACM TOPLAS, 1987

10

Example: Acyclic CFG and its
Control Dependence Graph (CDG)

START STOP
T ¢ F / \\
1 START 3 1
<0 >0
POSTDOMINATOR TREE
=0
2 3 START
T ¢
U U 1

A

2 3

CONTROL FLOW GRAPH CONTROL DEPENDENCE GRAPH

11

Control Dependence: Discussion

* A node x in directed graph G with a single exit node
postdominates node y in G if any path from y to the exit node
of G must pass through x.

« A statement y is said to be control dependent on another
statement x if:

—there exists a non-trivial path from x to y such that every
statement z=x in the path is postdominated by y and

—x is not postdominated by y.

* In other words, a control dependence exists from S1 to S2 if
one branch out of S1 forces execution of S2 and another
doesn't

* Note that control dependences also can be seen at as a
property of basic blocks (depends on CFG granularity)

12

Compiler Improvement of Register
Usage
Chapter 8

13

Scalar Replacement (Recap)

« Example: Scalar Replacement in tl = B(0)
case of loop carried dependence t2 = B(1)

spanning multiple iterations
DO I =1, N

t3 = B(I+1)

DOI =1, N A(I) = t1 + £3
A(I) = B(I-1) + B(I+1) £l = 2
ENDDO t2 = t3
ENDDO

« One fewer load for each iteration
for reference to B which had a
loop carried input dependence
spanning 2 iterations

e Invariants maintained were
tl1=B(I-1);t2=B(I);t3=B(I+1)

14

Eliminate Scalar Copies by unrolling

tl = B(0) tl = B(O)
t2 = B(1)
t2 = B(1) mN3 = MOD(N,3)
DO I =1, N DO I = 1, mN3
t3 = B(I+1)
t3 = B(I+1) Preloop D) - 1 5 t3
A(I) = t1 + t3 £1 = £2
tl = t2 t2 = t3
ENDDO
82 = v DO I = mN3 + 1, N, 3
ENDDO Main Loop £3 = B(I+1)
A(I) = t1 + t3
tl = B(I+2)
* Unnecessary register-register A(I+l) = £2 + tl
copies £2 = B(I+3)
* Unroll loop 3 times A(I+2) = 3 + t2
ENDDO

15

Pruning the dependence graph

Prune all anti dependence edges

Prune flow and input dependence edges that do not represent a
potential reuse

Prune redundant input dependence edges

Prune output dependence edges after rest of the pruning is
done

16

Pruning the dependence graph

« Example: Eliminate killed dependences
— When killed dependence is a flow dependence

Sl: A(I+1l) = ...
S2: A(I) = ...
S3: ... = A(I)

- Store in S2 is a killing store. Flow dependence from S1 to S3 is
pruned

— When killed dependence is an input dependence
Sl: ... = A(I+1)
S2: A(I) = ...
S3: ... = A(I-1)

- Store in S2 is a killing store. Input dependence from S1 to S3
is pruned

17

Unroll-and-Jam

DO I = 1, N*2
DOJ =1, M
A(I) = A(I) + B(J)
ENDDO

ENDDO

« Can we achieve reuse of
references to B ?

« Use transformation called
Unroll-and-Jam

18

DO I = 1, N*2, 2
DO J =1, M
A(I) = A(I) + B(J)
A(I+1) = A(I+1) + B(J)
ENDDO
ENDDO

« Unroll outer loop twice and then
fuse the copies of the inner loop

e Brought two uses of B(J)
together

Unroll-and-Jam

DO I =1, N*2, 2 DO I =1, N*2, 2

DO J =1, M sO = A(I)
sl = A(I+1)

A(I) = A(I) + B(J)
DOJ =1, M
A(I+1) = A(I+1) + B(J)

t = B(J)
ENDDO sO = sO0 + t
ENDDO sl = sl + t
ENDDO
A(I) = sO

« Apply scalar replacement on this

code A(I+1l) = sl

ENDDO

* Half the number of loads as the
original program

19

Legality of Unroll-and-Jam

« Is unroll-and-jam always legal?
DO I =1, N*2, 2

DOJ =1, M
DO I = 1, N*2

A(I+1,J-1) = A(I,J) + B(I,J)
DO J =1, M A(I+2,J-1) = A(I+1,J) + B(I+1,J)
A(I+1,J-1) = A(I,J) + B(I,J) ENDDO
ENDDO ENDDO
ENDDO

* This is wrong!ll

« Apply unroll-and- jam

20

Legality of Unroll-and-Jam

Legality of unroll-and-jam Legality of unroll-and-jam.

I=3
I=2
J=1

@ @ I=1

[
I
w
(o
T
NN

(o
I
=
(
I
N

21

Legality of Unroll-and-Jam

« Direction vector in this example was (<, >)
— This makes loop interchange illegal
—Unroll-and-Jam is loop interchange followed by unrolling inner loop
followed by another loop interchange

* But does loop interchange illegal imply unroll-and-jam illegal ?
NO

22

Legality of Unroll-and-Jam

« Consider this example

DO I = 1, N*2 Legality of unroll-and-jam.

DOJ =1, M

—
I
W

[G]6) OX6O
| /

A(I+2,J-1) = A(I,J) + B(I,J)

ENDDO

ENDDO

« Direction vector is (<, >); still
unroll-and- jam possible because
of distances involved

I
N
1}
w
Il
B

23

Conditions for legality of unroll-and-jam

 Definition: Unroll-and-jam to factor n consists of unrolling the
outer loop n-1 times and fusing those copies together.

* Theorem: An unroll-and-jam to a factor of n is legal iff there
exists no dependence with direction vector (<,>) such that the

distance for the outer loop is less than n.

24

Conclusion

* We have learned two memory hierarchy transformations:
—scalar replacement
—unroll-and- jam

* They reduce the number of memory accesses by increasing use
of processor registers

25

Managing Cache

Allen and Kennedy, Chapter 9

26

Review: How do set-associative caches
work?

Address of word to be accessed

\\\\ %\\\ Set Index | Block offset

S b d
2" cache blocks per set
2b words 2b words
Set#0 Data e o o Data
Valid Tag Valid Tag
L
L]
L]
2b words 2b words
Set #
.. Data - Data
25_ 1 e e o
Valid NN Valid
% t
AN e e 0

s
2 : 1 Multiplexer

Word accessed from cache

27

Loop Blocking (Tiling)

- DOJT =1 M
DOI=1,N
D(I) = D(T) + B(I,J)
ENDDO
ENDDO

NM/b misses for each of arrays B and D
==> total of 2ZNM/b misses
b = block (line) size in words (elements)

Assume that N is large enough for elements of D to overflow cache

28

Blocking loop |

« After strip-mine-and-interchange
DOII=1N,S
DOJ=1M
DO T = IT, MIN(II+S-1, N)
D(I) = D(T) + B(L,J)
ENDDO
ENDDO
ENDDO
NM/b +N/b = (1+1/M)NM / b misses

Assume that S is >= b and is also small enough to allow S elements
of D to be held in cache for all iterations of the J loop

29

Blocking Loop J

« DOJT =1, M T
DOI=1,N
DO jj = J, MIN(J+T-1, M)
D(T) = D() + B(Z, jj)
ENDDO
ENDDO
ENDDO
NM/b misses for array B (if T is small enough)
(N/b)*(M/T) misses for array D
==> Total of (1 + 1/T) NM/b misses

30

Legality of Blocking

« Every direction vector for a dependence carried by any of the

loops L,...L,.; has either an "=" or a "<" in the kth position

« Conservative testing

g
W
]

158

31

Summary

« Two different kind of reuse
— Temporal reuse

— Spatial reuse

« Strategies to increase the two reuse
—Loop Interchange
— Cache Blocking

32

Compiling Array Assignments

Allen and Kennedy, Chapter 13

33

Fortran 90

* Range of a vector operation in Fortran 90 denoted by a triplet:
<lower bound: upper bound: increment>

A(1:100:2) = B(2:51:1) + 3.0

« Semantics of Fortran 90 require that for vector statements, all
inputs to the statement are fetched before any results are
stored

* As with DO loops, the default value of the increment is 1,
i.e., B(2:51) is equivalent to B(2:51:1)

34

Safe Scalarization

Naive algorithm for safe scalarization: Use temporary storage to make
sure scalarization dependences are not created

Consider:
A(2:201) = 2.0 * A(1:200)

can be split up into:
T(1:200) = 2.0 * A(1:200)
A(2:201) = T(1:200)

Then scalarize using SimpleScalarize
DO I =1, 200
T(I) = 2.0 * A(I)
ENDDO
DO I = 2, 201
A(I) = T(I-1)
ENDDO

35

Loop Reversal

A(2:256) = A(1:255) + 1.0

* A scalarization approach using loop reversal that avoids the need
for a temporary:

DO I = 256, 2, -1
A(I) = A(I-1) + 1.0

ENDDO

36

Loop Reversal

When can we use loop reversal?
— Loop reversal maps true dependences into antidependences
— But may also map antidependences into true dependences
A(2:257) = (A(1:256) + A(3:258)) / 2.0

After scalarization:
DO I = 2, 257
A(I) = (A(I-1) + A(I+l)) / 2.0
ENDDO

Loop Reversal gets us:
DO I = 257, 2
A(I) = (A(I-1) + A(I+1)) / 2.0
ENDDO

Thus, cannot use loop reversal in presence of antidependences

Goal: ensure that scalarized loop has no loop-carried true dependences
37

Multidimensional Scalarization

e Vector statements in Fortran 90 in more than 1 dimension:
A(1:100, 1:100) = B(1:100, 1, 1:100)

 corresponds to:
DO J = 1, 100
A(1:100, J) = B(1:100, 1, J)
ENDDO

* Scalarization in multiple dimensions:
A(1:100, 1:100) = 2.0 * A(1:100, 1:100)

« Obvious Strategy: convert each vector iterator into a loop:
DO J =1, 100, 1
DO I =1, 100
A(I,J) = 2.0 * A(I,J)
ENDDO
ENDDO

38

Multidimensional Scalarization

* What should the order of the loops be after scalarization?

—Familiar question: We dealt with this issue in Loop Selection/
Interchange in Chapter 5

* Profitability of a particular configuration depends on target
architecture

—For simplicity, we shall assume shorter strides through memory are
better

— Thus, optimal choice for innermost loop is the leftmost vector
iterator

39

Loop Interchange

« Sometimes, there is a tradeoff between scalarization and
optimal memory hierarchy usage

A(2:100, 3:101) = A(3:101, 1:201:2)
* If we scalarize this using the prescribed order:
DO I = 3, 101
DO 100 J = 2, 100
A(J,I) = A(J+1,2*I-5)
ENDDO
ENDDO
* Direction vectors for true dependences:
— (<, >) (forI =3,4)and (>, > (forI =6, 7)

* Cannot use loop reversal, input prefetching

« _Can use _temporaries
40

Loop Interchange

* However, we can use loop interchange to get:

DO J = 2, 100
DO I = 3, 101
A(J,I) = A(J+1l,2*I-5)
ENDDO
ENDDO

« Not optimal memory hierarchy usage, but reduction of
temporary storage

* Loop interchange is useful to reduce size of temporaries

e It can also eliminate scalarization dependences
41

Scalarization Example

DO J = 2, N-1

A(2:N-1,J) = A(1:N-2,J) + A(3:N,J) +
A(2:N-1,J-1) + A(2:N-1,J+1) /4.
ENDDO

* Loop carried true dependence, antidependence

* Naive compiler could generate:
DO J = 2, N-1
DO i = 2, N-1
T(i-1) = (A(i-1,J) + A(i+l,J) + A(i,J-1) + A(i,J+1))/4
ENDDO
DO i = 2, N-1
A(i,J) = T(i-1)
ENDDO
ENDDO

.« 2 - SN-ZZZ accesses to_memory due to array T

42

Scalarization Example

However, can use input prefetching to get:
DO J = 2, N-1
ta0 = A(1, J)
DO i = 2, N-2
tAl = (tAO+A(i+l,J)+A(i,J-1)+A(i,J+1))/4
tA0 = A(i-1, J)
A(i,J) = tAl
ENDDO
tAl = (tAO+A(N,J)+A(N-1,J-1)+A(N-1,J+1))/4
A(N-1,J) = tAl
ENDDO

If temporaries are allocated to registers, no more memory accesses
than original Fortran 90 program

43

Exam 2

 Take-home exam (3 hours)
— Open book: open book, open notes, no other resources
— Scope of exam is limited to chapters 7, 8, 9, 13

— Exam will be made available today, and will be due by 4pm on
Friday, Dec 10th

44

