COMP 515: Advanced Compilation for Vector and Parallel Processors

Vivek Sarkar
Department of Computer Science Rice University
vsarkar@rice.edu
http://www.cs.rice.edu/~vsarkar/comp515
COMP 515
Lecture 22
3 December, 2015

End-semester Summary

Exam 2 scope: Chapters 7, 8, 9, 13 of Allen and Kennedy book

Control Dependences

Chapter 7

Control Dependences

- Constraints posed by control flow

```
DO 100 I = 1, N
    IF (A(I-1).GT. 0.0) GO TO 100
        A(I) = A(I) + B(I)*C
```

100 CONTINUE
If we vectorize by...
$S_{2} A(1: N)=A(1: N)+B(1: N) * C$
DO $100 \mathrm{I}=1, \mathrm{~N}$
$S_{1} \quad I F(A(I-1) . G T .0 .0)$ GO TO 100
100 CONTINUE
...we get the wrong answer

- We are missing dependences
- There is a dependence from S_{1} to S_{2} - a control dependence

Branch removal for If-conversion

- Basic idea:
- Make a pass through the program.
- Maintain a Boolean expression cc that represents the condition that must be true for the current expression to be executed
-On encountering a branch, conjoin the controlling expression into cc
- On encountering a target of a branch, its controlling expression is disjoined into cc

Branch Removal: Forward Branches

- Remove forward branches by inserting appropriate guards

```
DO \(100 \mathrm{I}=1, \mathbf{N}\)
    IF (A(I).GT.10) GO TO 60
        \(\mathrm{A}(\mathrm{I})=\mathrm{A}(\mathrm{I})+10\)
        IF (B(I).GT.10) GO TO 80
        \(B(I)=B(I)+10\)
        \(A(I)=B(I)+A(I)\)
        \(B(I)=A(I)-5\)
        ENDDO
        DO \(100 \mathrm{I}=1, \mathrm{~N}\)
            \(\mathrm{m} 1=\mathrm{A}(\mathrm{I}) . \mathrm{GT} .10\)
        IF (.NOT.m1) \(A(I)=A(I)+10\)
        IF (.NOT.m1) m2 = B(I).GT. 10
        IF (.NOT.m1.AND..NOT.m2) \(B(I)=B(I)+10\)
        IF (. NOT.m1.AND. .NOT.m2.OR.m1)A(I) \(=B(I)+A(I)\)
        IF (. NOT.m1.AND. . NOT.m2.OR.m1.OR. .NOT.m1
            .AND.m2) \(B(I)=A(I)-5\)
ENDDO
```

C
20
C_{2}
40
60
80
==>

Branch Removal: Forward Branches

- We can simplify to:

```
    DO \(100 \mathrm{I}=1, \mathrm{~N}\)
        \(\mathrm{ml}=\mathrm{A}(\mathrm{I}) \cdot \mathrm{GT} .10\)
20 IF(.NOT.m1) \(A(I)=A(I)+10\)
        IF (.NOT.m1) m2 = B(I).GT. 10
40 IF (.NOT.m1.AND..NOT.m2)
            \(B(I)=B(I)+10\)
60 IF (m1.OR..NOT.m2)
        \(A(I)=B(I)+A(I)\)
\(80 B(I)=A(I)-5\)
    ENDDO
```

- and then vectorize to:
$m 1(1: N)=A(1: N) . G T .10$
20 WHERE (.NOT.m1(1:N)) A(1:N) $=A(1: N)+10$
WHERE(.NOT.m1(1:N)) m2(1:N) = B(1:N).GT.10
40 WHERE (.NOT.m1(1:N).AND..NOT.m2(1:N)) B(1:N) = B(1:N) + 10
60 WHERE (m1 (1:N).OR..NOT.m2(1:N)) A(1:N) = B(1:N) + A(1:N)
$80 B(1: N)=A(1: N)-5$

Control Flow Graph: Example

CONTROL FLOW GRAPH

Examples of Dominator and Postdominator Trees

CONTROL FLOW GRAPH

POST-DOMINATOR TREE

DOMINATOR TREE

Control Dependence: Definition

Node Y is control dependent on node X with label L in CFG if and only if

1. there exists a nonnull path $X \longrightarrow Y$, starting with the edge labeled L, such that Y post-dominates every node, W, strictly between X and Y in the path, and
2. Y does not post-dominate X.

Reference: "The Program Dependence Graph and its Use in Optimization", J. Ferrante et al, ACM TOPLAS, 1987

Example: Acyclic CFG and its Control Dependence Graph (CDG)

CONTROL FLOW GRAPH

POSTDOMINATOR TREE

CONTROL DEPENDENCE GRAPH

Control Dependence: Discussion

- A node x in directed graph G with a single exit node postdominates node y in G if any path from y to the exit node of G must pass through x.
- A statement y is said to be control dependent on another statement x if:
-there exists a non-trivial path from x to y such that every statement $z \neq x$ in the path is postdominated by y and
$-x$ is not postdominated by y.
- In other words, a control dependence exists from S1 to S2 if one branch out of S1 forces execution of S2 and another doesn't
- Note that control dependences also can be seen at as a property of basic blocks (depends on CFG granularity)

Compiler Improvement of Register Usage

Chapter 8

Scalar Replacement (Recap)

- Example: Scalar Replacement in case of loop carried dependence spanning multiple iterations

DO $I=1, N$

$$
A(I)=B(I-1)+B(I+1)
$$

ENDDO

$$
\begin{array}{rl}
t 1 & =B(0) \\
t 2 & =B(1) \\
D O & I=1, N \\
t 3 & =B(I+1) \\
A(I)=t 1+t 3 \\
t 1 & =t 2 \\
t 2 & =t 3
\end{array}
$$

ENDDO

- One fewer load for each iteration for reference to B which had a loop carried input dependence spanning 2 iterations
- Invariants maintained were

$$
t 1=B(I-1) ; t 2=B(I) ; t 3=B(I+1)
$$

Eliminate Scalar Copies by unrolling

$$
\begin{aligned}
& t 1=B(0) \\
& t 2=B(1) \\
& \text { DO } I=1, N \\
& t 3=B(I+1) \\
& A(I)=t 1+t 3 \\
& t 1=t 2 \\
& t 2=t 3
\end{aligned}
$$

ENDDO

$$
\begin{aligned}
& \mathrm{t} 1=\mathrm{B}(0) \\
& \mathrm{t} 2=\mathrm{B}(1) \\
& \mathrm{mN} 3=\mathrm{MOD}(\mathrm{~N}, 3) \\
& \mathrm{DO} \mathrm{I}=1, \mathrm{mN} 3 \\
& \mathrm{t} 3=\mathrm{B}(\mathrm{I}+1) \\
& \mathrm{A}(\mathrm{I})=\mathrm{t} 1+\mathrm{t} 3 \\
& \mathrm{t} 1=\mathrm{t} 2
\end{aligned} \quad \begin{aligned}
& \mathrm{t} 2=\mathrm{t} 3
\end{aligned} \text { ENDDO} \begin{aligned}
& \text { DO } \mathrm{I}=\mathrm{mN} 3+1, \mathrm{~N}, 3
\end{aligned}
$$

$$
t 3=B(I+1)
$$

$$
A(I)=t 1+t 3
$$

$$
t 1=B(I+2)
$$

$$
A(I+1)=t 2+t 1
$$

$$
t 2=B(I+3)
$$

$$
A(I+2)=t 3+t 2
$$

ENDDO

Pruning the dependence graph

- Prune all anti dependence edges
- Prune flow and input dependence edges that do not represent a potential reuse
- Prune redundant input dependence edges
- Prune output dependence edges after rest of the pruning is done

Pruning the dependence graph

- Example: Eliminate killed dependences
- When killed dependence is a flow dependence

$$
\begin{aligned}
& S 1: A(I+1)=\ldots \\
& S 2: A(I)=\ldots \\
& S 3: \ldots=A(I)
\end{aligned}
$$

- Store in S2 is a killing store. Flow dependence from S1 to S3 is pruned
- When killed dependence is an input dependence

$$
\begin{aligned}
& \text { S1: } \ldots=A(I+1) \\
& S 2: A(I)=\ldots \\
& S 3: \ldots=A(I-1)
\end{aligned}
$$

- Store in S2 is a killing store. Input dependence from S1 to S3 is pruned

Unroll-and-Jam

```
DO \(I=1, N * 2\)
    DO \(J=1, M\)
        \(A(I)=A(I)+B(J)\)
```

 ENDDO
 ENDDO

- Can we achieve reuse of references to B ?
- Use transformation called Unroll-and-Jam

```
DO I = 1,N*2, 2
    DO J = 1, M
        A(I)=A(I) + B(J)
        A(I+1)=A(I+1) + B(J)
    ENDDO
ENDDO
```

- Unroll outer loop twice and then fuse the copies of the inner loop
- Brought two uses of $B(J)$ together

Unroll-and-Jam

$$
\begin{aligned}
& \text { DO } I=1, N * 2,2 \\
& \text { DO } J=1, M \\
& \\
& A(I)=A(I)+B(J) \\
& \\
& A(I+1)=A(I+1)+B(J)
\end{aligned}
$$

ENDDO
ENDDO

- Apply scalar replacement on this code

$$
\begin{aligned}
& \text { DO } \left.\begin{array}{l}
I=1, N * 2,2 \\
s 0=A(I) \\
s 1=A(I+1) \\
D O J=1, M \\
t=B(J) \\
s 0=s 0+t \\
s 1
\end{array}\right]=s 1+t \\
& \text { ENDDO } \\
& A(I)=s 0 \\
& A(I+1)=s 1
\end{aligned}
$$

- Half the number of loads as the original program

Legality of Unroll-and-Jam

- Is unroll-and-jam always legal?

```
DO I = 1, N*2
    DO J = 1, M
        A(I+1,J-1) = A(I,J) + B(I,J)
```

 ENDDO
    ```
DO I = 1, N*2, 2
    DO J = 1, M
        A(I+1,J-1) = A(I,J) + B(I,J)
        A(I+2,J-1) = A(I+1,J) + B(I+1,J)
        ENDDO
ENDDO
```

ENDDO

- This is wrong!!!
- Apply unroll-and-jam

Legality of Unroll-and-Jam

Legality of unroll-and-jam

Legality of unroll-and-jam.

Legality of Unroll-and-Jam

- Direction vector in this example was ($<,>$)
-This makes loop interchange illegal
-Unroll-and-Jam is loop interchange followed by unrolling inner loop followed by another loop interchange
- But does loop interchange illegal imply unroll-and-jam illegal ? NO

Legality of Unroll-and-Jam

- Consider this example

```
DO I = 1, N*2
    DO J = 1,M
    A(I+2,J-1)=A(I,J) + B(I,J)
    ENDDO
ENDDO
```

- Direction vector is (<,>); still unroll-and-jam possible because of distances involved

Legality of unroll-and-jam.

Conditions for legality of unroll-and-jam

- Definition: Unroll-and-jam to factor n consists of unrolling the outer loop $n-1$ times and fusing those copies together.
- Theorem: An unroll-and-jam to a factor of n is legal iff there exists no dependence with direction vector (\langle,$\rangle) such that the$ distance for the outer loop is less than n.

Conclusion

- We have learned two memory hierarchy transformations:
- scalar replacement
- unroll-and-jam
- They reduce the number of memory accesses by increasing use of processor registers

Managing Cache

Allen and Kennedy, Chapter 9

Review: How do set-associative caches work?

Address of word to be accessed

Loop Blocking (Tiling)

- $D O J=1, M$

$$
\begin{aligned}
D O I & =1, N \\
D(I) & =D(I)+B(I, J)
\end{aligned}
$$

ENDDO
ENDDO

NM/b misses for each of arrays B and D
$==>$ total of $2 \mathrm{NM} / \mathrm{b}$ misses
$\mathrm{b}=$ block (line) size in words (elements)
Assume that N is large enough for elements of D to overflow cache

Blocking loop I

- After strip-mine-and-interchange
$D O I I=1, N, S$
$D O J=1, M$
DO I = II, MIN(II $+S-1, N)$
$D(I)=D(I)+B(I, J)$
ENDDO
ENDDO
ENDDO
$N M / b+N / b=(1+1 / M) N M / b$ misses
Assume that S is $>=b$ and is also small enough to allow S elements of D to be held in cache for all iterations of the J loop

Blocking Loop J

- DO J = 1, M, T

$$
\begin{aligned}
& D O I=1, N \\
& D O j j=J, M I N(J+T-1, M) \\
& D(I)=D(I)+B(I, j j)
\end{aligned}
$$

ENDDO
ENDDO
ENDDO
$N M / b$ misses for array B (if T is small enough)
(N/b)*(M/T) misses for array D
$==>$ Total of $(1+1 / T)$ NM/b misses

Legality of Blocking

- Every direction vector for a dependence carried by any of the loops $L_{0} . . L_{k+1}$ has either an "=" or a "<" in the kth position
- Conservative testing

Summary

- Two different kind of reuse
- Temporal reuse
-Spatial reuse
- Strategies to increase the two reuse
- Loop Interchange
- Cache Blocking

Compiling Array Assignments

Allen and Kennedy, Chapter 13

Fortran 90

- Range of a vector operation in Fortran 90 denoted by a triplet: <lower bound: upper bound: increment>

$$
A(1: 100: 2)=B(2: 51: 1)+3.0
$$

- Semantics of Fortran 90 require that for vector statements, all inputs to the statement are fetched before any results are stored
- As with DO loops, the default value of the increment is 1 , i.e., $B(2: 51)$ is equivalent to $B(2: 51: 1)$

Safe Scalarization

- Naive algorithm for safe scalarization: Use temporary storage to make sure scalarization dependences are not created
- Consider:

$$
\mathrm{A}(2: 201)=2.0 * \mathrm{~A}(1: 200)
$$

- can be split up into:

$$
\begin{aligned}
& T(1: 200)=2.0 * A(1: 200) \\
& A(2: 201)=T(1: 200)
\end{aligned}
$$

- Then scalarize using SimpleScalarize

$$
\begin{aligned}
\mathrm{DO} I= & 1,200 \\
& T(I)=2.0 * A(I)
\end{aligned}
$$

ENDDO
DO I = 2, 201

$$
A(I)=T(I-1)
$$

Loop Reversal

$$
A(2: 256)=A(1: 255)+1.0
$$

- A scalarization approach using loop reversal that avoids the need for a temporary:

DO I = 256, 2, -1

$$
A(I)=A(I-1)+1.0
$$

ENDDO

Loop Reversal

- When can we use loop reversal?
- Loop reversal maps true dependences into antidependences
- But may also map antidependences into true dependences

$$
A(2: 257)=(A(1: 256)+A(3: 258)) / 2.0
$$

- After scalarization:

$$
\begin{aligned}
& \text { DO I = 2, } 257 \\
& A(I)=(A(I-1)+A(I+1)) / 2.0
\end{aligned}
$$

ENDDO

- Loop Reversal gets us:

```
DO I = 257, 2
    A(I) = (A(I-1) +A(I+1) ) / 2.0
```

 ENDDO
 - Thus, cannot use loop reversal in presence of antidependences
- Goal: ensure that scalarized loop has no loop-carried true dependences

Multidimensional Scalarization

- Vector statements in Fortran 90 in more than 1 dimension:

$$
A(1: 100,1: 100)=B(1: 100,1,1: 100)
$$

- corresponds to:

```
DO J = 1, 100
    \(A(1: 100, J)=B(1: 100,1, J)\)
```

ENDDO

- Scalarization in multiple dimensions:

$$
A(1: 100,1: 100)=2.0 \text { * } A(1: 100,1: 100)
$$

- Obvious Strategy: convert each vector iterator into a loop:

```
DO \(J=1,100,1\)
    DO \(I=1,100\)
        \(A(I, J)=2.0 * A(I, J)\)
```

 ENDDO
 ENDDO

Multidimensional Scalarization

- What should the order of the loops be after scalarization?
-Familiar question: We dealt with this issue in Loop Selection/ Interchange in Chapter 5
- Profitability of a particular configuration depends on target architecture
-For simplicity, we shall assume shorter strides through memory are better
-Thus, optimal choice for innermost loop is the leftmost vector iterator

Loop Interchange

- Sometimes, there is a tradeoff between scalarization and optimal memory hierarchy usage

$$
A(2: 100,3: 101)=A(3: 101,1: 201: 2)
$$

- If we scalarize this using the prescribed order:

$$
\begin{aligned}
& \text { DO } I=3,101 \\
& \text { DO } 100 J=2,100 \\
& A(J, I)=A(J+1,2 * I-5)
\end{aligned}
$$

ENDDO

ENDDO

- Direction vectors for true dependences:

$$
-(\langle,\rangle)(\text { for } I=3,4) \text { and }(>,>)(\text { for } I=6,7)
$$

- Cannot use loop reversal, input prefetching
- Can use temporaries

Loop Interchange

- However, we can use loop interchange to get:

```
DO J = 2, 100
    DO I = 3,101
        A(J,I) = A (J+1, 2*I-5)
    ENDDO
ENDDO
```

- Not optimal memory hierarchy usage, but reduction of temporary storage
- Loop interchange is useful to reduce size of temporaries
- It can also eliminate scalarization dependences

Scalarization Example

$$
\begin{aligned}
& \text { DO } J=2, N-1 \\
& A(2: N-1, J)= A(1: N-2, J)+A(3: N, J)+ \\
& A(2: N-1, J-1)+A(2: N-1, J+1) / 4
\end{aligned}
$$

ENDDO

- Loop carried true dependence, antidependence
- Naive compiler could generate:

```
DO J = 2,N-1
        DO i = 2, N-1
        T(i-1) = (A(i-1,J) +A(i+1,J) +A(i,J-1) +A(i,J+1) )/4
        ENDDO
        DO i = 2, N-1
        A(i,J) = T(i-1)
        ENDDO
ENDDO
```

- 2. $(\mathrm{N}-2)^{2}$ accesses to memory due to array T

Scalarization Example

- However, can use input prefetching to get:

```
DO J \(=2, \mathrm{~N}-1\)
    \(\mathrm{tAO}=\mathrm{A}(1, \mathrm{~J})\)
    DO \(i=2, N-2\)
        \(t A 1=(t A 0+A(i+1, J)+A(i, J-1)+A(i, J+1)) / 4\)
        tAO \(=A(i-1, J)\)
        \(\mathrm{A}(\mathrm{i}, \mathrm{J})=\mathrm{tA} 1\)
    ENDDO
    tA1 \(=(t A 0+A(N, J)+A(N-1, J-1)+A(N-1, J+1)) / 4\)
    \(\mathrm{A}(\mathrm{N}-1, \mathrm{~J})=\mathrm{tA} 1\)
ENDDO
```

- If temporaries are allocated to registers, no more memory accesses than original Fortran 90 program

Exam 2

- Take-home exam (3 hours)
- Open book: open book, open notes, no other resources
- Scope of exam is limited to chapters 7, 8, 9, 13
- Exam will be made available today, and will be due by 4pm on Friday, Dec 10th

