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End-semester Summary

Exam 2 scope: Chapters 7, 8, 9, 13 of Allen and Kennedy book
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Control Dependences

Chapter 7
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Control Dependences
• Constraints posed by control flow 

   DO 100 I = 1, N 

S1       IF (A(I-1).GT. 0.0) GO TO 100 

S2        A(I) = A(I) + B(I)*C 

100 CONTINUE   

If we vectorize by... 
S2    A(1:N) = A(1:N) + B(1:N)*C 

   DO 100 I = 1, N 

S1        IF (A(I-1).GT. 0.0) GO TO 100 

   100  CONTINUE 

…we get the wrong answer 

• We are missing dependences 

• There is a dependence from S1 to S2 - a control dependence

S2 δ1 S1
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Branch removal for If-conversion
• Basic idea: 

—Make a pass through the program. 
—Maintain a Boolean expression cc that represents the condition that 

must be true for the current expression to be executed 
—On encountering a branch, conjoin the controlling expression into cc 
—On encountering a target of a branch, its controlling expression is 

disjoined into cc
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Branch Removal: Forward Branches
• Remove forward branches by inserting appropriate guards 

DO 100 I = 1,N 
C1   IF (A(I).GT.10) GO TO 60 

20   A(I) = A(I) + 10 
C2    IF (B(I).GT.10) GO TO 80 
40    B(I) = B(I) + 10 
60      A(I) = B(I) + A(I) 
80  B(I) = A(I) - 5 
      ENDDO 
==> 

 

    DO 100 I = 1,N 
      m1 = A(I).GT.10 

20    IF(.NOT.m1) A(I) = A(I) + 10 
    IF(.NOT.m1) m2 = B(I).GT.10 
40    IF(.NOT.m1.AND..NOT.m2) B(I) = B(I) + 10 
60    IF(.NOT.m1.AND..NOT.m2.OR.m1)A(I) = B(I) + A(I) 
80    IF(.NOT.m1.AND..NOT.m2.OR.m1.OR..NOT.m1 
  .AND.m2) B(I) = A(I) - 5 

 ENDDO
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Branch Removal: Forward Branches
• We can simplify to: 

  DO 100 I = 1,N 

              m1 = A(I).GT.10 

20    IF(.NOT.m1) A(I) = A(I) + 10 

    IF(.NOT.m1) m2 = B(I).GT.10 

40    IF(.NOT.m1.AND..NOT.m2)  

   B(I) = B(I) + 10 

60    IF(m1.OR..NOT.m2) 

   A(I) = B(I) + A(I) 

80    B(I) = A(I) - 5 

 ENDDO 

• and then vectorize to: 
    m1(1:N) = A(1:N).GT.10 

20  WHERE(.NOT.m1(1:N)) A(1:N) = A(1:N) + 10 

   WHERE(.NOT.m1(1:N)) m2(1:N) = B(1:N).GT.10 

40   WHERE(.NOT.m1(1:N).AND..NOT.m2(1:N)) B(1:N) = B(1:N) + 10 

60   WHERE(m1(1:N).OR..NOT.m2(1:N)) A(1:N) = B(1:N) + A(1:N) 

80   B(1:N) = A(1:N) - 5
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Control Flow Graph: Example
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Examples of Dominator and 
Postdominator Trees
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Control Dependence: Definition
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Example: Acyclic CFG and its  
Control Dependence Graph (CDG)
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Control Dependence: Discussion
• A node x in directed graph G with a single exit node 

postdominates node y in G if any path from y to the exit node 
of G must pass through x. 

• A statement y is said to be control dependent on another 
statement x if: 
—there exists a non-trivial path from x to y such that every 

statement z≠x in the path is postdominated by y and 
—x is not postdominated by y. 

• In other words, a control dependence exists from S1 to S2 if 
one branch out of S1 forces execution of S2 and another 
doesn’t 

• Note that control dependences also can be seen at as a 
property of basic blocks (depends on CFG granularity)
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Compiler Improvement of Register 
Usage
Chapter 8
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Scalar Replacement (Recap)

• Example: Scalar Replacement in 
case of loop carried dependence 
spanning multiple iterations 

 

DO I = 1, N

A(I) = B(I-1) + B(I+1)

ENDDO

t1 = B(0)

t2 = B(1)

DO I = 1, N

t3 = B(I+1)

A(I) = t1 + t3

t1 = t2

t2 = t3

ENDDO

• One fewer load for each iteration 
for reference to B which had a 
loop carried input dependence 
spanning 2 iterations 

• Invariants maintained were 
   t1=B(I-1);t2=B(I);t3=B(I+1)
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Preloop

Main Loop

Eliminate Scalar Copies by unrolling
t1 = B(0)

t2 = B(1)

DO I = 1, N

t3 = B(I+1)

A(I) = t1 + t3

t1 = t2

t2 = t3

ENDDO

• Unnecessary register-register 
copies 

• Unroll loop 3 times

t1 = B(0)

t2 = B(1)

mN3 = MOD(N,3)

DO I = 1, mN3

t3 = B(I+1)

A(I) = t1 + t3

t1 = t2

t2 = t3

ENDDO

DO I = mN3 + 1, N, 3

t3 = B(I+1)

A(I) = t1 + t3

t1 = B(I+2)

A(I+1) = t2 + t1

t2 = B(I+3)

A(I+2) = t3 + t2

ENDDO
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Pruning the dependence graph
• Prune all anti dependence edges 

• Prune flow and input dependence edges that do not represent a 
potential reuse 

• Prune redundant input dependence edges 

• Prune output dependence edges after rest of the pruning is 
done
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Pruning the dependence graph
• Example: Eliminate killed dependences 

— When killed dependence is a flow dependence 

S1: A(I+1) = ... 

S2: A(I)  = ... 

S3: ...  = A(I)

– Store in S2 is a killing store. Flow dependence from S1 to S3 is 
pruned 

— When killed dependence is an input dependence 

S1: ... = A(I+1) 

S2: A(I)  = ... 

S3: ...  = A(I-1)

– Store in S2 is a killing store. Input dependence from S1 to S3 
is pruned
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Unroll-and-Jam
DO I = 1, N*2

DO J = 1, M

A(I) = A(I) + B(J)

ENDDO

ENDDO

• Can we achieve reuse of 
references to B ? 

• Use transformation called 
Unroll-and-Jam

DO I = 1, N*2, 2

DO J = 1, M

A(I) = A(I) + B(J)

A(I+1) = A(I+1) + B(J)

ENDDO

ENDDO

• Unroll outer loop twice and then 
fuse the copies of the inner loop 

• Brought two uses of B(J) 
together
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Unroll-and-Jam
DO I = 1, N*2, 2

DO J = 1, M

A(I) = A(I) + B(J)

A(I+1) = A(I+1) + B(J)

ENDDO

ENDDO

• Apply scalar replacement on this 
code

DO I = 1, N*2, 2

s0 = A(I)

s1 = A(I+1)

DO J = 1, M

t = B(J)

s0 = s0 + t

s1 = s1 + t

ENDDO

A(I) = s0

A(I+1) = s1

ENDDO

• Half the number of loads as the 
original program
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Legality of Unroll-and-Jam
• Is unroll-and-jam always legal? 

DO I = 1, N*2

DO J = 1, M

    A(I+1,J-1) = A(I,J) + B(I,J)

ENDDO

ENDDO

• Apply unroll-and-jam

DO I = 1, N*2, 2

DO J = 1, M

A(I+1,J-1) = A(I,J) + B(I,J)

A(I+2,J-1) = A(I+1,J) + B(I+1,J)

 ENDDO

ENDDO

• This is wrong!!!
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Legality of Unroll-and-Jam
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Legality of Unroll-and-Jam
• Direction vector in this example was (<,>) 

—This makes loop interchange illegal 
—Unroll-and-Jam is loop interchange followed by unrolling inner loop 

followed by another loop interchange 

• But does loop interchange illegal imply unroll-and-jam illegal ? 
NO
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Legality of Unroll-and-Jam
• Consider this example 

DO I = 1, N*2

DO J = 1, M

  A(I+2,J-1) = A(I,J) + B(I,J)

 ENDDO

ENDDO

• Direction vector is (<,>); still 
unroll-and-jam possible because 
of distances involved
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Conditions for legality of unroll-and-jam
• Definition: Unroll-and-jam to factor n consists of unrolling the 

outer loop n-1 times and fusing those copies together. 

• Theorem: An unroll-and-jam to a factor of n is legal iff there 
exists no dependence with direction vector (<,>) such that the 
distance for the outer loop is less than n.
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Conclusion
• We have learned two memory hierarchy transformations: 

—scalar replacement  
—unroll-and-jam 

• They reduce the number of memory accesses by increasing use 
of processor registers
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Managing Cache

Allen and Kennedy, Chapter 9
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Review: How do set-associative caches 
work?
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Loop Blocking (Tiling)
• DO J = 1, M 

      DO I = 1, N 

         D(I) = D(I) + B(I,J) 

      ENDDO 

   ENDDO 

NM/b misses for each of arrays B and D 

==> total of 2NM/b misses 

b = block (line) size in words (elements) 

Assume that N is large enough for elements of D to overflow cache
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Blocking loop I
• After strip-mine-and-interchange 

   DO II = 1, N, S 

      DO J = 1, M 

         DO I = II, MIN(II+S-1, N) 

            D(I) = D(I) + B(I,J) 

         ENDDO 

      ENDDO 

   ENDDO 

NM/b + N/b = (1 + 1/M) NM / b misses 

 Assume that S is >= b and is also small enough to allow S elements 
of D to be held in cache for all iterations of the J loop
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Blocking Loop J
• DO J = 1, M, T 

      DO I = 1, N 

         DO jj = J, MIN(J+T-1, M) 

            D(I) = D(I) + B(I, jj) 

         ENDDO 

      ENDDO 

   ENDDO 

NM/b misses for array B (if T is small enough)  

(N/b)*(M/T) misses for array D 

==> Total of (1 + 1/T) NM/b misses
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Legality of Blocking
• Every direction vector for a dependence carried by any of the 

loops L0…Lk+1 has either an “=“ or a “<“ in the kth position 

• Conservative testing
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Summary

• Two different kind of reuse 
—Temporal reuse 
—Spatial reuse 

• Strategies to increase the two reuse 
—Loop Interchange 
—Cache Blocking
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Allen and Kennedy, Chapter 13

Compiling Array Assignments
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Fortran 90
• Range of a vector operation in Fortran 90 denoted by a triplet: 

<lower bound: upper bound: increment> 

   A(1:100:2) = B(2:51:1) + 3.0 

• Semantics of Fortran 90 require that for vector statements, all 
inputs to the statement are fetched before any results are 
stored 

• As with DO loops, the default value of the  increment is 1, 
i.e., B(2:51) is equivalent to B(2:51:1)
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Safe Scalarization
• Naive algorithm for safe scalarization: Use temporary storage to make 

sure scalarization dependences are not created 

• Consider: 
  A(2:201) = 2.0 * A(1:200) 

• can be split up into: 
  T(1:200) = 2.0 * A(1:200) 

  A(2:201) = T(1:200) 

• Then scalarize using SimpleScalarize 
  DO I = 1, 200 

   T(I) = 2.0 * A(I) 

  ENDDO 

  DO I = 2, 201 

   A(I) = T(I-1) 

  ENDDO
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Loop Reversal

  A(2:256) = A(1:255) + 1.0 

• A scalarization approach using loop reversal that avoids the need 
for a temporary: 

  DO I = 256, 2, -1 

   A(I) = A(I-1) + 1.0 

  ENDDO
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Loop Reversal
• When can we use loop reversal? 

— Loop reversal maps true dependences into antidependences 
— But may also map antidependences into true dependences 

  A(2:257) = ( A(1:256) + A(3:258) ) / 2.0 

• After scalarization: 
  DO I = 2, 257 

     A(I) = ( A(I-1) + A(I+1) ) / 2.0 

  ENDDO 

• Loop Reversal gets us: 
  DO I = 257, 2 

     A(I) = ( A(I-1) + A(I+1) ) / 2.0 

  ENDDO 

• Thus, cannot use loop reversal in presence of antidependences 

• Goal: ensure that scalarized loop has no loop-carried true dependences
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Multidimensional Scalarization
• Vector statements in Fortran 90 in more than 1 dimension: 
  A(1:100, 1:100) = B(1:100, 1, 1:100) 

• corresponds to: 
  DO J = 1, 100 

    A(1:100, J) = B(1:100, 1, J) 

  ENDDO 

• Scalarization in multiple dimensions: 
  A(1:100, 1:100) = 2.0 * A(1:100, 1:100) 

• Obvious Strategy: convert each vector iterator into a loop: 
  DO J = 1, 100, 1 

    DO I = 1, 100 

      A(I,J) = 2.0 * A(I,J) 

    ENDDO 

  ENDDO
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Multidimensional Scalarization
• What should the order of the loops be after scalarization? 

—Familiar question: We dealt with this issue in Loop Selection/
Interchange in  Chapter 5 

• Profitability of a particular configuration depends on target 
architecture 
—For simplicity, we shall assume shorter strides through memory are 

better 

—Thus, optimal choice for innermost loop is the leftmost vector 
iterator
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Loop Interchange
• Sometimes, there is a tradeoff between scalarization and 

optimal memory hierarchy usage 
 A(2:100, 3:101) = A(3:101, 1:201:2) 

• If we scalarize this using the prescribed order: 
  DO I = 3, 101 

    DO 100 J = 2, 100 

      A(J,I) = A(J+1,2*I-5) 

    ENDDO 

  ENDDO 

• Direction vectors for true dependences: 
— (<, >) (for I = 3, 4) and (>, >) (for I = 6, 7) 

• Cannot use loop reversal, input prefetching 

• Can use temporaries
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Loop Interchange
• However, we can use loop interchange to get: 

  DO J = 2, 100 

    DO I = 3, 101 

      A(J,I) = A(J+1,2*I-5) 

    ENDDO 

  ENDDO 

• Not optimal memory hierarchy usage, but reduction of 
temporary storage 

• Loop interchange is useful to reduce size of temporaries 

• It can also eliminate scalarization dependences
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Scalarization Example
  DO J = 2, N-1 

     A(2:N-1,J) = A(1:N-2,J) + A(3:N,J) +  

                  A(2:N-1,J-1) + A(2:N-1,J+1)/4. 

  ENDDO 

• Loop carried true dependence, antidependence 

• Naive compiler could generate: 
  DO J = 2, N-1 

    DO i = 2, N-1 

      T(i-1) = (A(i-1,J) + A(i+1,J) + A(i,J-1) + A(i,J+1) )/4 

    ENDDO 

    DO i = 2, N-1 

      A(i,J) = T(i-1) 

    ENDDO 

  ENDDO 

• 2 ⋅ (N-2)2 accesses to memory due to array T
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Scalarization Example
• However, can use input prefetching to get: 
  DO J = 2, N-1 

    tA0 = A(1, J) 

    DO i = 2, N-2 

      tA1 = (tA0+A(i+1,J)+A(i,J-1)+A(i,J+1))/4 

      tA0 = A(i-1, J) 

      A(i,J) = tA1 

    ENDDO 

    tA1 = (tA0+A(N,J)+A(N-1,J-1)+A(N-1,J+1))/4 

    A(N-1,J) = tA1 

  ENDDO 

• If temporaries are allocated to registers, no more memory accesses 
than original Fortran 90 program



Exam 2
• Take-home exam (3 hours) 

— Open book: open book, open notes, no other resources 
— Scope of exam is limited to chapters 7, 8, 9, 13 
— Exam will be made available today, and will be due by 4pm on 

Friday, Dec 10th
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