
COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

http://www.cs.rice.edu/~vsarkar/comp515

COMP 515 Lecture 22 3 December, 2015

1

End-semester Summary

Exam 2 scope: Chapters 7, 8, 9, 13 of Allen and Kennedy book

2

Control Dependences

Chapter 7

3

Control Dependences
• Constraints posed by control flow

 DO 100 I = 1, N

S1 IF (A(I-1).GT. 0.0) GO TO 100

S2 A(I) = A(I) + B(I)*C

100 CONTINUE

If we vectorize by...
S2 A(1:N) = A(1:N) + B(1:N)*C

 DO 100 I = 1, N

S1 IF (A(I-1).GT. 0.0) GO TO 100

 100 CONTINUE

…we get the wrong answer

• We are missing dependences

• There is a dependence from S1 to S2 - a control dependence

S2 δ1 S1

4

Branch removal for If-conversion
• Basic idea:

—Make a pass through the program.
—Maintain a Boolean expression cc that represents the condition that

must be true for the current expression to be executed
—On encountering a branch, conjoin the controlling expression into cc
—On encountering a target of a branch, its controlling expression is

disjoined into cc

5

Branch Removal: Forward Branches
• Remove forward branches by inserting appropriate guards

DO 100 I = 1,N
C1 IF (A(I).GT.10) GO TO 60

20 A(I) = A(I) + 10
C2 IF (B(I).GT.10) GO TO 80
40 B(I) = B(I) + 10
60 A(I) = B(I) + A(I)
80 B(I) = A(I) - 5
 ENDDO
==>

 DO 100 I = 1,N
 m1 = A(I).GT.10

20 IF(.NOT.m1) A(I) = A(I) + 10
 IF(.NOT.m1) m2 = B(I).GT.10
40 IF(.NOT.m1.AND..NOT.m2) B(I) = B(I) + 10
60 IF(.NOT.m1.AND..NOT.m2.OR.m1)A(I) = B(I) + A(I)
80 IF(.NOT.m1.AND..NOT.m2.OR.m1.OR..NOT.m1
 .AND.m2) B(I) = A(I) - 5

 ENDDO

6

Branch Removal: Forward Branches
• We can simplify to:

 DO 100 I = 1,N

 m1 = A(I).GT.10

20 IF(.NOT.m1) A(I) = A(I) + 10

 IF(.NOT.m1) m2 = B(I).GT.10

40 IF(.NOT.m1.AND..NOT.m2)

 B(I) = B(I) + 10

60 IF(m1.OR..NOT.m2)

 A(I) = B(I) + A(I)

80 B(I) = A(I) - 5

 ENDDO

• and then vectorize to:
 m1(1:N) = A(1:N).GT.10

20 WHERE(.NOT.m1(1:N)) A(1:N) = A(1:N) + 10

 WHERE(.NOT.m1(1:N)) m2(1:N) = B(1:N).GT.10

40 WHERE(.NOT.m1(1:N).AND..NOT.m2(1:N)) B(1:N) = B(1:N) + 10

60 WHERE(m1(1:N).OR..NOT.m2(1:N)) A(1:N) = B(1:N) + A(1:N)

80 B(1:N) = A(1:N) - 5

7

Control Flow Graph: Example

8

Examples of Dominator and
Postdominator Trees

9

Control Dependence: Definition

10

Example: Acyclic CFG and its  
Control Dependence Graph (CDG)

11

Control Dependence: Discussion
• A node x in directed graph G with a single exit node

postdominates node y in G if any path from y to the exit node
of G must pass through x.

• A statement y is said to be control dependent on another
statement x if:
—there exists a non-trivial path from x to y such that every

statement z≠x in the path is postdominated by y and
—x is not postdominated by y.

• In other words, a control dependence exists from S1 to S2 if
one branch out of S1 forces execution of S2 and another
doesn’t

• Note that control dependences also can be seen at as a
property of basic blocks (depends on CFG granularity)

12

Compiler Improvement of Register
Usage
Chapter 8

13

Scalar Replacement (Recap)

• Example: Scalar Replacement in
case of loop carried dependence
spanning multiple iterations

DO I = 1, N

A(I) = B(I-1) + B(I+1)

ENDDO

t1 = B(0)

t2 = B(1)

DO I = 1, N

t3 = B(I+1)

A(I) = t1 + t3

t1 = t2

t2 = t3

ENDDO

• One fewer load for each iteration
for reference to B which had a
loop carried input dependence
spanning 2 iterations

• Invariants maintained were
 t1=B(I-1);t2=B(I);t3=B(I+1)

14

Preloop

Main Loop

Eliminate Scalar Copies by unrolling
t1 = B(0)

t2 = B(1)

DO I = 1, N

t3 = B(I+1)

A(I) = t1 + t3

t1 = t2

t2 = t3

ENDDO

• Unnecessary register-register
copies

• Unroll loop 3 times

t1 = B(0)

t2 = B(1)

mN3 = MOD(N,3)

DO I = 1, mN3

t3 = B(I+1)

A(I) = t1 + t3

t1 = t2

t2 = t3

ENDDO

DO I = mN3 + 1, N, 3

t3 = B(I+1)

A(I) = t1 + t3

t1 = B(I+2)

A(I+1) = t2 + t1

t2 = B(I+3)

A(I+2) = t3 + t2

ENDDO

15

Pruning the dependence graph
• Prune all anti dependence edges

• Prune flow and input dependence edges that do not represent a
potential reuse

• Prune redundant input dependence edges

• Prune output dependence edges after rest of the pruning is
done

16

Pruning the dependence graph
• Example: Eliminate killed dependences

— When killed dependence is a flow dependence

S1: A(I+1) = ...

S2: A(I) = ...

S3: ... = A(I)

– Store in S2 is a killing store. Flow dependence from S1 to S3 is
pruned

— When killed dependence is an input dependence

S1: ... = A(I+1)

S2: A(I) = ...

S3: ... = A(I-1)

– Store in S2 is a killing store. Input dependence from S1 to S3
is pruned

17

Unroll-and-Jam
DO I = 1, N*2

DO J = 1, M

A(I) = A(I) + B(J)

ENDDO

ENDDO

• Can we achieve reuse of
references to B ?

• Use transformation called
Unroll-and-Jam

DO I = 1, N*2, 2

DO J = 1, M

A(I) = A(I) + B(J)

A(I+1) = A(I+1) + B(J)

ENDDO

ENDDO

• Unroll outer loop twice and then
fuse the copies of the inner loop

• Brought two uses of B(J)
together

18

Unroll-and-Jam
DO I = 1, N*2, 2

DO J = 1, M

A(I) = A(I) + B(J)

A(I+1) = A(I+1) + B(J)

ENDDO

ENDDO

• Apply scalar replacement on this
code

DO I = 1, N*2, 2

s0 = A(I)

s1 = A(I+1)

DO J = 1, M

t = B(J)

s0 = s0 + t

s1 = s1 + t

ENDDO

A(I) = s0

A(I+1) = s1

ENDDO

• Half the number of loads as the
original program

19

Legality of Unroll-and-Jam
• Is unroll-and-jam always legal?

DO I = 1, N*2

DO J = 1, M

 A(I+1,J-1) = A(I,J) + B(I,J)

ENDDO

ENDDO

• Apply unroll-and-jam

DO I = 1, N*2, 2

DO J = 1, M

A(I+1,J-1) = A(I,J) + B(I,J)

A(I+2,J-1) = A(I+1,J) + B(I+1,J)

 ENDDO

ENDDO

• This is wrong!!!

20

Legality of Unroll-and-Jam

21

Legality of Unroll-and-Jam
• Direction vector in this example was (<,>)

—This makes loop interchange illegal
—Unroll-and-Jam is loop interchange followed by unrolling inner loop

followed by another loop interchange

• But does loop interchange illegal imply unroll-and-jam illegal ?
NO

22

Legality of Unroll-and-Jam
• Consider this example

DO I = 1, N*2

DO J = 1, M

 A(I+2,J-1) = A(I,J) + B(I,J)

 ENDDO

ENDDO

• Direction vector is (<,>); still
unroll-and-jam possible because
of distances involved

23

Conditions for legality of unroll-and-jam
• Definition: Unroll-and-jam to factor n consists of unrolling the

outer loop n-1 times and fusing those copies together.

• Theorem: An unroll-and-jam to a factor of n is legal iff there
exists no dependence with direction vector (<,>) such that the
distance for the outer loop is less than n.

24

Conclusion
• We have learned two memory hierarchy transformations:

—scalar replacement
—unroll-and-jam

• They reduce the number of memory accesses by increasing use
of processor registers

25

Managing Cache

Allen and Kennedy, Chapter 9

26

Review: How do set-associative caches
work?

27

Loop Blocking (Tiling)
• DO J = 1, M

 DO I = 1, N

 D(I) = D(I) + B(I,J)

 ENDDO

 ENDDO

NM/b misses for each of arrays B and D

==> total of 2NM/b misses

b = block (line) size in words (elements)

Assume that N is large enough for elements of D to overflow cache

28

Blocking loop I
• After strip-mine-and-interchange

 DO II = 1, N, S

 DO J = 1, M

 DO I = II, MIN(II+S-1, N)

 D(I) = D(I) + B(I,J)

 ENDDO

 ENDDO

 ENDDO

NM/b + N/b = (1 + 1/M) NM / b misses

 Assume that S is >= b and is also small enough to allow S elements
of D to be held in cache for all iterations of the J loop

29

Blocking Loop J
• DO J = 1, M, T

 DO I = 1, N

 DO jj = J, MIN(J+T-1, M)

 D(I) = D(I) + B(I, jj)

 ENDDO

 ENDDO

 ENDDO

NM/b misses for array B (if T is small enough)

(N/b)*(M/T) misses for array D

==> Total of (1 + 1/T) NM/b misses

30

Legality of Blocking
• Every direction vector for a dependence carried by any of the

loops L0…Lk+1 has either an “=“ or a “<“ in the kth position

• Conservative testing

31

Summary

• Two different kind of reuse
—Temporal reuse
—Spatial reuse

• Strategies to increase the two reuse
—Loop Interchange
—Cache Blocking

32

Allen and Kennedy, Chapter 13

Compiling Array Assignments

33

34

Fortran 90
• Range of a vector operation in Fortran 90 denoted by a triplet:

<lower bound: upper bound: increment>

 A(1:100:2) = B(2:51:1) + 3.0

• Semantics of Fortran 90 require that for vector statements, all
inputs to the statement are fetched before any results are
stored

• As with DO loops, the default value of the increment is 1,
i.e., B(2:51) is equivalent to B(2:51:1)

35

Safe Scalarization
• Naive algorithm for safe scalarization: Use temporary storage to make

sure scalarization dependences are not created

• Consider:
 A(2:201) = 2.0 * A(1:200)

• can be split up into:
 T(1:200) = 2.0 * A(1:200)

 A(2:201) = T(1:200)

• Then scalarize using SimpleScalarize
 DO I = 1, 200

 T(I) = 2.0 * A(I)

 ENDDO

 DO I = 2, 201

 A(I) = T(I-1)

 ENDDO

36

Loop Reversal

 A(2:256) = A(1:255) + 1.0

• A scalarization approach using loop reversal that avoids the need
for a temporary:

 DO I = 256, 2, -1

 A(I) = A(I-1) + 1.0

 ENDDO

37

Loop Reversal
• When can we use loop reversal?

— Loop reversal maps true dependences into antidependences
— But may also map antidependences into true dependences

 A(2:257) = (A(1:256) + A(3:258)) / 2.0

• After scalarization:
 DO I = 2, 257

 A(I) = (A(I-1) + A(I+1)) / 2.0

 ENDDO

• Loop Reversal gets us:
 DO I = 257, 2

 A(I) = (A(I-1) + A(I+1)) / 2.0

 ENDDO

• Thus, cannot use loop reversal in presence of antidependences

• Goal: ensure that scalarized loop has no loop-carried true dependences

38

Multidimensional Scalarization
• Vector statements in Fortran 90 in more than 1 dimension:
 A(1:100, 1:100) = B(1:100, 1, 1:100)

• corresponds to:
 DO J = 1, 100

 A(1:100, J) = B(1:100, 1, J)

 ENDDO

• Scalarization in multiple dimensions:
 A(1:100, 1:100) = 2.0 * A(1:100, 1:100)

• Obvious Strategy: convert each vector iterator into a loop:
 DO J = 1, 100, 1

 DO I = 1, 100

 A(I,J) = 2.0 * A(I,J)

 ENDDO

 ENDDO

39

Multidimensional Scalarization
• What should the order of the loops be after scalarization?

—Familiar question: We dealt with this issue in Loop Selection/
Interchange in Chapter 5

• Profitability of a particular configuration depends on target
architecture
—For simplicity, we shall assume shorter strides through memory are

better

—Thus, optimal choice for innermost loop is the leftmost vector
iterator

40

Loop Interchange
• Sometimes, there is a tradeoff between scalarization and

optimal memory hierarchy usage
 A(2:100, 3:101) = A(3:101, 1:201:2)

• If we scalarize this using the prescribed order:
 DO I = 3, 101

 DO 100 J = 2, 100

 A(J,I) = A(J+1,2*I-5)

 ENDDO

 ENDDO

• Direction vectors for true dependences:
— (<, >) (for I = 3, 4) and (>, >) (for I = 6, 7)

• Cannot use loop reversal, input prefetching

• Can use temporaries

41

Loop Interchange
• However, we can use loop interchange to get:

 DO J = 2, 100

 DO I = 3, 101

 A(J,I) = A(J+1,2*I-5)

 ENDDO

 ENDDO

• Not optimal memory hierarchy usage, but reduction of
temporary storage

• Loop interchange is useful to reduce size of temporaries

• It can also eliminate scalarization dependences

42

Scalarization Example
 DO J = 2, N-1

 A(2:N-1,J) = A(1:N-2,J) + A(3:N,J) +

 A(2:N-1,J-1) + A(2:N-1,J+1)/4.

 ENDDO

• Loop carried true dependence, antidependence

• Naive compiler could generate:
 DO J = 2, N-1

 DO i = 2, N-1

 T(i-1) = (A(i-1,J) + A(i+1,J) + A(i,J-1) + A(i,J+1))/4

 ENDDO

 DO i = 2, N-1

 A(i,J) = T(i-1)

 ENDDO

 ENDDO

• 2 ⋅ (N-2)2 accesses to memory due to array T

43

Scalarization Example
• However, can use input prefetching to get:
 DO J = 2, N-1

 tA0 = A(1, J)

 DO i = 2, N-2

 tA1 = (tA0+A(i+1,J)+A(i,J-1)+A(i,J+1))/4

 tA0 = A(i-1, J)

 A(i,J) = tA1

 ENDDO

 tA1 = (tA0+A(N,J)+A(N-1,J-1)+A(N-1,J+1))/4

 A(N-1,J) = tA1

 ENDDO

• If temporaries are allocated to registers, no more memory accesses
than original Fortran 90 program

Exam 2
• Take-home exam (3 hours)

— Open book: open book, open notes, no other resources
— Scope of exam is limited to chapters 7, 8, 9, 13
— Exam will be made available today, and will be due by 4pm on

Friday, Dec 10th

44

