COMP 515: Advanced Compilation for Vector and Parallel Processors

Prof. Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515
Example:

\[
\begin{align*}
&\text{DO } I = 1, N \\
&\quad \text{DO } J = 1, M \\
&\quad \quad \text{DO } K = 2, L \\
&\quad \quad \quad A(I+1, J, K-1) = A(I, J, K) + 10 \\
&\quad \quad \text{ENDDO} \\
&\quad \text{ENDDO} \\
&\text{ENDDO}
\end{align*}
\]

• Q: Are there any anti or output dependences in this example? If so, list them. If not, explain why not.

• A: No. There is only a flow dependence with distance vector (1, 0, -1)
Dependence: Theory and Practice

Allen and Kennedy, Chapter 2 (contd)
Distance Vectors (Summary)

- Consider a dependence in a loop nest of \(n \) loops
 - Statement \(S_1 \) with iteration vector \(i \) is the source of the dependence
 - Statement \(S_2 \) with iteration vector \(j \) is the sink of the dependence
 - \(n \) = number of common loops enclosing \(S_1 \) and \(S_2 \)

- The distance vector, \(d(i,j) \), is a vector of length \(n \) such that:
 - \(d(i,j)_k = j_k - i_k \)

- In general, the distance vector is denoted as \(d \), without the \((i,j) \), because we conservatively assume that it applies to all pairs \((i,j) \) that satisfy \(j = i + d \)

- We normalize distance vectors for loops in which the index step size is not equal to 1
 - It’s usually simpler to convert all loops to have a step of +1 before computing distance vectors
Direction Vectors (Summary)

- Definition 2.10 in the book:

Suppose that there is a dependence from statement \(S_1 \) on iteration \(i \) of a loop nest of \(n \) loops and statement \(S_2 \) on iteration \(j \), then the dependence direction vector is \(D(i,j) \) is defined as a vector of length \(n \) such that

\[
\begin{align*}
D(i,j)_k &= \text{"<" if } i_k < j_k \quad \text{equivalently, if } d(i,j)_k > 0 \\
&= \text{"=" if } i_k = j_k \quad \text{equivalently, if } d(i,j)_k = 0 \\
&= \text{">" if } i_k > j_k \quad \text{equivalently, if } d(i,j)_k < 0
\end{align*}
\]

- A direction vector element summarizes a set of distances
 - "<" summarizes the set \{1, 2, 3, ...\}
 - "=" summarizes the singleton set \{0\}
 - "\>" summarizes the set \{-1, -2, -3, ...\}
 - "*" denotes the union of "<", "=" , and "\>"
 - and so on ...

\[\text{COMP 515, Fall 2015 (V. Sarkar)}\]
Implausible Distance & Direction Vectors

• A distance vector is implausible if its leftmost nonzero element is negative i.e., if the vector is lexicographically less than the zero vector.

• Likewise, a direction vector is implausible if its leftmost non "=" component contains ">"

• By definition, no dependence in a sequential program can have an implausible distance or direction vector as this would imply that the sink of the dependence occurs before the source.
Loop-carried and Loop-independent Dependences

• If in a loop statement S_2 depends on S_1, then there are two possible ways of this dependence occurring:

1. S_1 and S_2 execute on different iterations
 — This is called a loop-carried dependence.

2. S_1 and S_2 execute on the same iteration
 — This is called a loop-independent dependence.

• It is possible for both loop-carried and loop-independent dependences to occur between the same pair of statements
Loop-independent dependences

- **Definition 2.15.** Statement S_2 has a loop-independent dependence on statement S_1 if and only if there exist two iteration vectors i and j such that:
 1) Statement S_1 refers to memory location M on iteration i, S_2 refers to M on iteration j, and $i = j$.
 2) There is a control flow path from S_1 to S_2 within the iteration.

Example:

```plaintext
DO I = 1, 10
  S_1 A(I) = ...
  S_2 ... = A(I)
ENDDO
```
Loop-independent dependences

• No common loop is necessary. For instance:

DO I = 1, 10
S_1 A(I) = ...
ENDDO
DO I = 1, 10
S_2 ... = A(20-I)
ENDDO

• An example with both loop-independent and loop-carried dependences:

DO I = 1, 9
S_1 A(I) = ...
S_2 ... = A(10-I)
ENDDO
Loop-carried dependence

- Definition 2.11

- Statement S_2 has a loop-carried dependence on statement S_1 if and only if S_1 references location M on iteration i, S_2 references M on iteration j and $d(i, j) > 0$ i.e., $D(i, j)$ contains a “<” as leftmost non “=” component and is lexicographically positive.

Example:

```plaintext
DO I = 1, N
    $S_1$  A(I+1) = F(I)
    $S_2$  F(I+1) = A(I)
ENDDO
```
Loop-carried dependence

• Level of a loop-carried dependence is the index of the leftmost non-“=” of D(i,j) for the dependence.

For instance:

```plaintext
DO I = 1, 10
    DO J = 1, 10
        DO K = 1, 10
            S_1 A(I, J, K+1) = A(I, J, K)
        ENDDO
    ENDDO
ENDDO
```

• Direction vector for S1 is (=, =, <)
• Level of the dependence is 3
• A level-k dependence between S_1 and S_2 is denoted by S_1 \delta_k S_2
Homework 1 due in class on Sep 8th:
Problems 2.2 and 2.3 from book

2.2 Construct all direction vectors for the following loop and indicate the type of dependence (true/anti/output) associated with each.

DO K = 1, 100
 DO J = 1, 100
 DO I = 1, 100
 A(I+1, J, K) = A(I, J, 5) + B
 END DO
 END DO
END DO

2.3: Can any loop in Exercise 2.2 be parallelized? If so give a parallel version.