
COMP 515: Advanced Compilation 
for Vector and Parallel Processors 

 
Prof. Vivek Sarkar 
Department of Computer Science 
Rice University 
vsarkar@rice.edu  
 
https://wiki.rice.edu/confluence/display/PARPROG/COMP515 

COMP 515  Lecture 6   15 September 2015 



COMP 515, Fall 2015 (V.Sarkar)2 

Homework #2 (Written Assignment)
•  Solve exercise 3.6 in book 

— This is case 4 of Lemma 3.3 
— Read Definitions 3.1, 3.2, 3.3 and Lemmas 3.1, 

3.2, 3.3 before starting 
•  Due in class on Tuesday, Sep 22nd 

 
•  Honor Code Policy: All submitted homeworks are 

expected to be the result of your individual effort. You 
are free to discuss course material and approaches to 
problems with your other classmates and the 
professors, but you should never misrepresent someone 
else’s work as your own. If you use any material from 
external sources, you must provide proper attribution.  



3 Copyright, 1996 © Dale Carnegie & Associates, Inc. 

Dependence Testing

Allen and Kennedy, Chapter 3 (contd) 



4 

Banerjee Inequality (Recap)
•  Theorem 3.3 (Banerjee).  Let D be a direction vector, and h be 

a dependence function.   h = 0 can be solved in the region R 
iff: 

 

 

 Proof:  Immediate from Lemma 3.3 and the IMV. 

Hi
−(Di) ≤ b0 − a0 ≤

i=1

n

∑ Hi
+(Di)

i=1

n

∑



5 

Example of using Banerjee Inequality 
(Recap)

DO I = 1, N

   DO J = 1, M

      DO K = 1, 100

         A(I,K) = A(I+J,K) + B

      ENDDO

   ENDDO

ENDDO

Testing (I, I+J) for D = (=,<,*): 

This is impossible, so the dependency doesn’t exist.

H1
−(=) + H2

−(<) = −(1− 0)−N + (1−1)+1 − (0− +1)+(M −1) + [(0− +1)− + 0+]1− 1 = −M ≤ 0
≤ H1

+(=) + H2+ (<) = (1 −1)+ N − (1 −1)−1+ (0+ −1)+ (M − 1) − [(0+ −1)− + 0−]1 −1 ≤ −2

5 



6 

Testing Direction Vectors
•  Must test pair of statements for all direction vectors. 
•  Potentially exponential in loop nesting. 

•  Can save time by pruning: 
  

(<,<,*)

(<,=,<) (<,=,=) (<,>,=)

(<,=,*) (<,>,*)

(<,*,*) (=,*,*) (>,*,*)

(*,*,*)

Should be (<.=, >) 

Implausible 



7 

Coupled Groups

•  So far, we’ve assumed separable subscripts. 

•  We can glean information from separable subscripts, and use it 
to split coupled groups. 

•  Most subscripts tend to be SIV, so this works pretty well. 



8 

Delta Test
•  Constraint vector C for a subscript group, contains one 

constraint for each index in group. 

•  The Delta test derives and propagates constraints from SIV 
subscripts. 

•  Constraints are also propagated from Restricted Double Index 
Variable (RDIV) subscripts, those of the form 

•  See Figure 3.13 in textbook for Delta test algorithm 

•  Tiem for the worksheet!  

< a1i + c1,a2 j + c2 >



9 

Basic dependence algorithm  
(for a given direction vector)

  Figure out what sort of subscripts we have
Partition subscripts into coupled groups

for each separable subscript

test it using appropriate test

if no dependence, we’re done

for each coupled group

use delta test

if no dependence, we’re done

return dependence otherwise

•  For more advanced dependence tests, see the Omega Project 
http://www.cs.umd.edu/projects/omega/ and Polyhedral compiler 
frameworks 



10 

Preliminary Transformations

Chapter 4 of Allen and Kennedy 



11 

Overview
•  Why do we need preliminary transformations? 
•  To create canonical representations of loop nests that simplify 

dependence testing 
— Requirements of dependence testing 

–  Stride 1 
–  Normalized loop 
–  Linear subscripts 
–  Subscripts composed of functions of loop induction variables 

— Higher dependence test accuracy 
— Easier implementation of dependence tests 



12 

An Example

INC = 2 
KI = 0 
DO I = 1, 100 
    DO J = 1, 100 
        KI = KI + INC 
        U(KI) = U(KI) + W(J) 
    ENDDO 
    S(I) = U(KI) 
ENDDO 

•  Programmer optimized code 
— Confusing to smart compilers 



13 

An Example

INC = 2 
KI = 0 
DO I = 1, 100 
    DO J = 1, 100 

  ! Deleted: KI = KI + INC 
        U(KI + J*INC) = U(KI + J*INC) + W(J) 
    ENDDO 
    KI = KI + 100 * INC 
    S(I) = U(KI) 
ENDDO 

•  Applying Induction-Variable Substitution (IVS) 
— Replace references to induction variables with functions of loop 

index for the purpose of dependence analysis 

•  In practice, induction variable information is often stored as 
“look-aside” information without actually transforming the code 
— Depends on whether optimizing back-end will strength-reduce the 

multiply operations 



14 

An Example

INC = 2 
KI = 0 
DO I = 1, 100 
   DO J = 1, 100 
         U(KI + (I-1)*100*INC + J*INC) =  
            U(KI + (I-1)*100*INC + J*INC) + W(J) 
    ENDDO 
    ! Deleted: KI = KI + 100 * INC 
    S(I) = U(KI + I * (100*INC)) 
ENDDO 
KI = KI + 100 * 100 * INC 

•  Second application of IVS 
— Remove all references to KI 



15 

An Example

INC = 2 
! Deleted: KI = 0 
DO I = 1, 100 
   DO J = 1, 100 
         U(I*200 + J*2 - 200) =  
            U(I*200 + J*2 -200) + W(J) 
    ENDDO 
    S(I) = U(I*200) 
ENDDO 
KI = 20000 

•  Applying Constant Propagation 
— Substitute the constants 



16 

An Example

DO I = 1, 100 
    DO J = 1, 100 
        U(I*200 + J*2 - 200) =  
            U(I*200 + J*2 - 200) + W(J) 
    ENDDO 
    S(I) = U(I*200) 
ENDDO 

•  Applying Dead Code Elimination 
— Removes all unused code 



17 

Information Requirements
•  Transformations need knowledge 

— Loop Stride 
— Loop-invariant quantities 
— Constant-values assignment 
— Usage of variables 



18 

Loop Normalization
•  Transform loop so that  

— The new stride becomes +1 (more important) 
— The new lower bound becomes +1 (less important) 

•  To make dependence testing as simple as possible 

•  Serves as information gathering phase 

•  Examples for loops with non-unit strides  
— DO I = N, 1, -1 è 

–  DO II = 1, N  { I = N-II+1; …  } 
— DO I = 2, 2*N, 2 



19 

Loop Normalization

•  Caveat 
—  Un-normalized: 
    DO I = 1, M 
       DO J = I, N 
          A(J, I) = A(J, I - 1) + 5 
       ENDDO 
    ENDDO 
    Has a direction vector of (<,=) 
 
—  Normalized: 
    DO I = 1, M 
       DO J = 1, N – I + 1 
          A(J + I – 1, I) = A(J + I – 1, I – 1) + 5 
       ENDDO 
    ENDDO 
    Has a direction vector of (<,>) 

19 



20 

Loop Normalization

•  Caveat 
—  Consider interchanging loops 

–  (<,=) becomes (=,<) OK 
–  (<,>) becomes (>,<)  

Problem (as we will study later) 

Handled by another transformation (loop skewing) 
— What if the step size is symbolic? 

–  Prohibits dependence testing 
–  Workaround: use step size 1 (if we know step size is positive) 

Less precise, but allow dependence testing 



21 

Definition-use Graph
•  Traditionally called Definition-use Chains 

•  Provides the map of variables usage 

•  Heavily used by preliminary transformations 



22 

Definition-use Graph
•  Definition-use graph is a graph that contains an edge from each 

definition point in the program to every possible use of the variable at 
run time 

•  uses(b): the set of all variables used within the block b that have no 
prior definitions within the block 

•  defsout(b): the set of all definitions within block b that are not killed 
within the block 

•  killed(b): the set of all definitions that define variables killed by other 
definitions within block b 



23 

Dead Code Elimination
•  Removes all dead code 
•  What is Dead Code ? 

— Code whose results are never used in any ‘Useful statements’ 

•  What are Useful statements ? 
— Are they simply output statements ? 
— Output statements, input statements, control flow statements, and 

their required statements 

•  Makes code cleaner 

•  Note that Dead Code is different from Unreachable Code 
— Unreachable code is code that can never be reached e.g., code for 

which all control conditions always evaluate to false 



24 

Dead Code Elimination



25 

Worksheet (Lecture 6)

DO I 
   DO J 
    DO K 
     A(J-I, I+1, J+K) = A(J-I,I,J+K) 
    ENDDO 
   ENDDO 
  ENDDO 

•  WORKSHEET: write the dependence equations for this 
example, and derive the distance vector 

•  First pass: establish ∆I = I’ - I  from second dimension 

•  Second pass: Propagate into first dimension to obtain ∆J  
•  Third pass: Propagate into third dimension to obtain ∆K 

25 

Name: _________________    Netid: ________________ 


