COMP 515: Advanced Compilation for Vector and Parallel Processors

Prof. Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515
Homework #2 (Written Assignment)

• Solve exercise 3.6 in book
 — This is case 4 of Lemma 3.3
 — Read Definitions 3.1, 3.2, 3.3 and Lemmas 3.1, 3.2, 3.3 before starting

• Due in class on Tuesday, Sep 22nd

• Honor Code Policy: All submitted homeworks are expected to be the result of your individual effort. You are free to discuss course material and approaches to problems with your other classmates and the professors, but you should never misrepresent someone else’s work as your own. If you use any material from external sources, you must provide proper attribution.
Constant Propagation

- Replace all variables that have constant values at runtime with those constant values
- Constant propagation is a standard data flow analysis used by compilers that employs the lattice below
Forward Expression Substitution

• Example – the opposite of common subexpression elimination!

```
DO I = 1, 100
  K = I + 2
  A(K) = A(K) + 5
ENDDO
```

```
DO I = 1, 100
  A(I+2) = A(I+2) + 5
ENDDO
```
Induction Variable Substitution

Definition: an auxiliary *induction* variable in a DO loop headed by \(\text{DO } I = LB, UB, S \) is any variable whose value can be correctly expressed as

\[
cexpr * I + iexpr_L
\]

at every location \(L \) where it is used in the loop, where \(cexpr \) and \(iexpr_L \) are expressions that do not vary in the loop, although different locations in the loop may require substitution of different values of \(iexpr_L \).
Induction Variable Substitution

Example:
DO I = 1, N
 A(I) = B(K) + 1
 K = K + 4
 ...
 D(K) = D(K) + A(I)
ENDDO

becomes:
DO I = 1, N
 A(I) = B(K) + 1
 K = 4*I + (initial value of K)
 ...
 D(K) = D(K) + A(I)
ENDDO

Graphic from SSA-based induction variable substitution example:
Induction Variable Substitution

• More complex example
 DO I = 1, N, 2
 K = K + 1
 A(K) = A(K) + 1 ! K = I + init-value
 K = K + 1
 A(K) = A(K) + 1 ! K = I + 1 + init-value
 ENDDO

• Alternative strategy is to recognize region invariance
 DO I = 1, N, 2
 A(K+1) = A(K+1) + 1
 K = K+1 + 1
 A(K) = A(K) + 1
 ENDDO
IVSub without loop normalization

```plaintext
DO I = L, U, S
    K = K + N
    ... = A(K)
ENDDO

DO I = L, U, S
    ... = A(K + (I - L + S) / S * N)
ENDDO
K = K + (U - L + S) / S * N
```

- **Problems:**
 - Inefficient code
 - Nonlinear subscript
IVSub with Loop Normalization

I = L
DO J = 1, (U - L + S) / S, 1
 K = K + N
 ... = A (K)
 I = I + S
ENDDO

I = L
DO J = 1, (U - L + S) / S, 1
 ... = A (K + J * N)
ENDDO
K = K + floor((U - L) / S) * N
I = L + floor((U - L) / S) * S
Summary

• Transformations to put more subscripts into standard form
 — Loop Normalization
 — Constant Propagation
 — Induction Variable Substitution

• Do loop normalization before induction-variable substitution

• Leave optimizations to compilers
 — Alternatively, perform preliminary transformations as look-aside analyses (then you’re guaranteed to “do no harm”)
Dependence: Theory and Practice

(Loop Distribution, Vectorization Algorithm)

Allen and Kennedy, Chapter 2
Can statements in loops which carry dependences be vectorized?

\[
\begin{align*}
D0 & \ I = 1, \ N \\
S_1 & \quad A(I+1) = B(I) + C \\
S_2 & \quad D(I) = A(I) + E
\end{align*}
\]

Yes! Dependence: \(S_1 \delta_1 S_2 \) can be converted to:

\[
\begin{align*}
D0 & \ I = 1, \ N \quad ! \ A(2:N+1) = B(1:N) + C \\
S_1 & \quad A(I+1) = B(I) + C \\
\text{END DO}
\end{align*}
\]

\[
\begin{align*}
D0 & \ I = 1, \ N \quad ! \ D(1:N) = A(1:N) + E \\
S_2 & \quad D(I) = A(I) + E \\
\text{ENDDO}
\end{align*}
\]
Loop Distribution

DO I = 1, N
S_1 A(I+1) = B(I) + C
S_2 D(I) = A(I) + E
ENDDO

• transformed to:
DO I = 1, N
S_1 A(I+1) = B(I) + C
ENDDO
DO I = 1, N
S_2 D(I) = A(I) + E
ENDDO

• leads to:
S_1 A(2:N+1) = B(1:N) + C
S_2 D(1:N) = A(1:N) + E
Loop Distribution

- Loop distribution fails if there is a cycle of dependences

```plaintext
DO I = 1, N
  S_1   A(I+1) = B(I) + C
  S_2   B(I+1) = A(I) + E
ENDDO
S_1 \delta_1 S_2 \text{ and } S_2 \delta_1 S_1
```

- Another example:

```plaintext
DO I = 1, N
  S_1   B(I) = A(I) + E
  S_2   A(I+1) = C(I) + D
ENDDO
```
procedure vectorize (L, D)
 // L is the maximal loop nest containing the statement.
 // D is the dependence graph for statements in L.
 find the set \{S_1, S_2, \ldots, S_m\} of maximal strongly-connected
 regions in the dependence graph D restricted to L (Tarjan);

 construct \(L_p\) from \(L\) by reducing each \(S_i\) to a single node and
 compute \(D_p\), the dependence graph naturally induced on \(L_p\) by \(D\);

 let \{p_1, p_2, \ldots, p_m\} be the \(m\) nodes of \(L_p\) numbered in an order
 consistent with \(D_p\) (use topological sort);

 for \(i = 1\) to \(m\) do begin
 if \(p_i\) contains a dependence cycle then
 generate a sequential DO-loop around the statements in \(p_i\);
 else
 directly rewrite \(p_i\) in vector notation, vectorizing it with
 respect to every loop containing it;
 end
 end
end vectorize
Problems With Simple Vectorization

```
DO I = 1, N
    DO J = 1, M
        S1
            A(I+1,J) = A(I,J) + B
    ENDDO
ENDDO
```

- Dependence from S_1 to itself with $d(i, j) = (1,0)$
- Key observation: Since dependence is at level 1, we can vectorize the inner loop!
- Can be converted to:
  ```
  DO I = 1, N
      S1
          A(I+1,1:M) = A(I,1:M) + B
  ENDDO
  ```
- The simple algorithm does not capitalize on such opportunities
DO I = 1, N
 S_1 B(I) = A(I) + C
 S_2 A(I+1) = C(I) + D
ENDDO

1. Compute the dependence graph for the above loop nest
2. Is it possible to distribute the loops around S1 and S2?
3. If your answer to #2 was yes, show the final code after loop distribution? (Don’t worry about vectorization)
COMP 515 Projects

- **Yuhan Peng, Maggie Tang**
 - DFGL transformations and OpenCL generation

- **Prasanth Chatarasi**
 - Polyhedral extensions for data race detection

- **Lucas Martinelli, Jonathan Sharman,**
 - Exploration of dependences and transformations in higher level OO languages, with a focus on C++ language and libraries (RAJA, Kokkos)

- **Jack Feser**
 - Exploration of ILP solvers for dependence analysis

- **Pete Curry, Lung Li**
 - OpenCL transformations for Digital Signal Processors

- **Zhipeng Wang**
 - Memory Hierarchy Management for iterative graph structures.