
COMP 515: Advanced Compilation 
for Vector and Parallel Processors 

 
Prof. Vivek Sarkar 
Department of Computer Science 
Rice University 
vsarkar@rice.edu  
 
https://wiki.rice.edu/confluence/display/PARPROG/COMP515 

COMP 515  Lecture 7   17 September 2015 



COMP 515, Fall 2015 (V.Sarkar)2 

Homework #2 (Written Assignment)
•  Solve exercise 3.6 in book 

— This is case 4 of Lemma 3.3 
— Read Definitions 3.1, 3.2, 3.3 and Lemmas 3.1, 

3.2, 3.3 before starting 
•  Due in class on Tuesday, Sep 22nd 

 
•  Honor Code Policy: All submitted homeworks are 

expected to be the result of your individual effort. You 
are free to discuss course material and approaches to 
problems with your other classmates and the 
professors, but you should never misrepresent someone 
else’s work as your own. If you use any material from 
external sources, you must provide proper attribution.  
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•  Replace all variables that have constant values at runtime with 
those constant values 

•  Constant propagation is a standard data flow analysis used by 
compilers that employs the lattice below 

Constant Propagation
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•  Example – the opposite of common subexpression 
elimination! 

Forward Expression Substitution

 
   DO I = 1, 100 
      K = I + 2 
      A(K) = A(K) + 5 
   ENDDO 

DO I = 1, 100 
   A(I+2) = A(I+2) + 5 
ENDDO 
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Definition: an auxiliary induction variable in a DO loop 
headed by DO I = LB, UB, S is any variable whose 
value can be correctly expressed as  
cexpr * I + iexprL  
at every location L where it is used in the loop, where 
cexpr and iexprL are expressions that do not vary in 
the loop, although different locations in the loop may 
require substitution of different values of iexprL 

Induction Variable Substitution
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Example: 
DO I = 1, N 
    A(I) = B(K) + 1 
    K = K + 4 
    … 
    D(K) = D(K) + A(I) 
ENDDO 
 
becomes: 
DO I = 1, N 
    A(I) = B(K) + 1 
    K = 4*I + (initial value of K) 
    … 
    D(K) = D(K) + A(I) 
ENDDO 
 

Induction Variable Substitution
Graphic from SSA-based induction variable 
substitution example: 
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•  More complex example 
DO I = 1, N, 2 
    K = K + 1 
    A(K) = A(K) + 1 ! K = I + init-value 
    K = K + 1 
    A(K) = A(K) + 1 ! K = I + 1 + init-value 
ENDDO 
 
•  Alternative strategy is to recognize region invariance 
DO I = 1, N, 2 
    A(K+1) = A(K+1) + 1 
    K = K+1 + 1 
    A(K) = A(K) + 1 
ENDDO 

Induction Variable Substitution
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DO I = L, U, S 
   K = K + N 
   … = A(K) 
ENDDO 
 
 
DO I = L, U, S 
   … = A(K + (I – L + S) / S * N) 
ENDDO 
K = K + (U – L + S) / S * N 

IVSub without loop normalization

•  Problems: 
— Inefficient code 
— Nonlinear subscript 
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I = L 
DO J = 1, (U-L+S)/S, 1 
   K = K + N 
   … = A (K) 
   I = I + S 
ENDDO 

IVSub with Loop Normalization

I = L 
DO J = 1, (U – L + S) / S, 1 
   … = A (K + J * N) 
ENDDO 
K = K + floor((U – L) / S)*N 
I = L + floor((U – L) / S)*S 
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•  Transformations to put more subscripts into standard form 
— Loop Normalization 
— Constant Propagation 
— Induction Variable Substitution 

•  Do loop normalization before induction-variable substitution 
•  Leave optimizations to compilers 

— Alternatively, perform preliminary transformations as look-aside 
analyses (then you’re guaranteed to “do no harm”) 

Summary
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Dependence: Theory and Practice 

 
(Loop Distribution, 

Vectorization Algorithm) 

Allen and Kennedy, Chapter 2 
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•  Can statements in loops which carry dependences be 
vectorized? 
  D0 I = 1, N 

S1   A(I+1) = B(I) + C 

S2   D(I) = A(I) + E 

 ENDDO 

•  Yes! Dependence: S1 δ1 S2 can be converted to: 
 D0 I = 1, N  ! A(2:N+1) = B(1:N) + C 

S1   A(I+1) = B(I) + C 

    END DO 

    D0 I = 1, N  ! D(1:N) = A(1:N) + E 

S2   D(I) = A(I) + E 

 ENDDO 

Loop Distribution
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DO I = 1, N 

S1   A(I+1) = B(I) + C 

S2   D(I) = A(I) + E 

 ENDDO 

Loop Distribution

•    transformed to: 
DO I = 1, N 

S1   A(I+1) = B(I) + C 
ENDDO 
DO I = 1, N 
S2      D(I) = A(I) + E 
ENDDO 

•    leads to: 
S1   A(2:N+1) = B(1:N) + C 

S2   D(1:N) = A(1:N) + E 
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•  Loop distribution fails if there is a cycle of 
dependences 

DO I = 1, N 

S1   A(I+1) = B(I) + C 

S2   B(I+1) = A(I) + E 

ENDDO 

S1 δ1 S2     and    S2 δ1 S1  

 

•  Another example:  
DO I = 1, N 

S1      B(I) = A(I) + E 

S2      A(I+1) = C(I) + D 

ENDDO 

Loop Distribution
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procedure vectorize (L, D) 
// L is the maximal loop nest containing the statement.  
// D is the dependence graph for statements in L.  
  find the set {S1, S2, ... , Sm} of maximal strongly-connected    
  regions in the dependence graph D restricted to L (Tarjan); 
 
  construct Lp from L by reducing each Si to a single node and  
  compute Dp, the dependence graph naturally induced on Lp by D; 
 
  let {p1, p2, ... , pm} be the m nodes of Lp numbered in an order  
  consistent with Dp (use topological sort); 
 
  for i = 1 to m do begin 
    if pi contains a dependence cycle then 
      generate a sequential DO-loop around the statements in pi; 
    else 
      directly rewrite pi in vector notation, vectorizing it with  
      respect to every loop containing it; 
  end 
end vectorize 

Simple Vectorization Algorithm
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 DO I = 1, N 

   DO J = 1, M 

S1    A(I+1,J) = A(I,J) + B 

   ENDDO 

 ENDDO 

•  Dependence from S1 to itself with d(i, j) = (1,0) 
•  Key observation: Since dependence is at level 1, we can 

vectorize the inner loop! 
•  Can be converted to:  

 DO I = 1, N 

S1    A(I+1,1:M) = A(I,1:M) + B 

 ENDDO 

•  The simple algorithm does not capitalize on such 
opportunities 

Problems With Simple Vectorization
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DO I = 1, N 

S1      B(I) = A(I) + C 

S2      A(I+1) = C(I) + D 

ENDDO 

1.  Compute the dependence graph for the above loop nest 
2.  Is it possible to distribute the loops around S1 and S2? 
3.  If your answer to #2 was yes, show the final code after loop 

distribution?  (Don’t worry about vectorization) 

Worksheet (Lecture 7)
Name: _________________    Netid: ________________ 
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COMP 515 Projects
•  Yuhan Peng, Maggie Tang 

— DFGL transformations and OpenCL generation 

•  Prasanth Chatarasi 
— Polyhedral extensions for data race detection 

•  Lucas Martinelli, Jonathan Sharman,  
— Exploration of dependences and transformations in higher level OO 

languages, with a focus on C++ language and libraries (RAJA, 
Kokkos) 

•   Jack Feser 
— Exploration of ILP solvers for dependence analysis 

•  Pete Curry, Lung Li 
— OpenCL transformations for Digital Signal Processors 

•  Zhipeng Wang 
— Memory Hierarchy Management for iterative graph structures. 
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