
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 7 17 September 2015

COMP 515, Fall 2015 (V.Sarkar)2

Homework #2 (Written Assignment)
•  Solve exercise 3.6 in book

— This is case 4 of Lemma 3.3
— Read Definitions 3.1, 3.2, 3.3 and Lemmas 3.1,

3.2, 3.3 before starting
•  Due in class on Tuesday, Sep 22nd

•  Honor Code Policy: All submitted homeworks are

expected to be the result of your individual effort. You
are free to discuss course material and approaches to
problems with your other classmates and the
professors, but you should never misrepresent someone
else’s work as your own. If you use any material from
external sources, you must provide proper attribution.

COMP 515, Fall 2015 (V.Sarkar)3

•  Replace all variables that have constant values at runtime with
those constant values

•  Constant propagation is a standard data flow analysis used by
compilers that employs the lattice below

Constant Propagation

COMP 515, Fall 2015 (V.Sarkar)4

•  Example – the opposite of common subexpression
elimination!

Forward Expression Substitution

 DO I = 1, 100
 K = I + 2
 A(K) = A(K) + 5
 ENDDO

DO I = 1, 100
 A(I+2) = A(I+2) + 5
ENDDO

COMP 515, Fall 2015 (V.Sarkar)5

Definition: an auxiliary induction variable in a DO loop
headed by DO I = LB, UB, S is any variable whose
value can be correctly expressed as
cexpr * I + iexprL
at every location L where it is used in the loop, where
cexpr and iexprL are expressions that do not vary in
the loop, although different locations in the loop may
require substitution of different values of iexprL

Induction Variable Substitution

COMP 515, Fall 2015 (V.Sarkar)6

Example:
DO I = 1, N
 A(I) = B(K) + 1
 K = K + 4
 …
 D(K) = D(K) + A(I)
ENDDO

becomes:
DO I = 1, N
 A(I) = B(K) + 1
 K = 4*I + (initial value of K)
 …
 D(K) = D(K) + A(I)
ENDDO

Induction Variable Substitution
Graphic from SSA-based induction variable
substitution example:

COMP 515, Fall 2015 (V.Sarkar)7

•  More complex example
DO I = 1, N, 2
 K = K + 1
 A(K) = A(K) + 1 ! K = I + init-value
 K = K + 1
 A(K) = A(K) + 1 ! K = I + 1 + init-value
ENDDO

•  Alternative strategy is to recognize region invariance
DO I = 1, N, 2
 A(K+1) = A(K+1) + 1
 K = K+1 + 1
 A(K) = A(K) + 1
ENDDO

Induction Variable Substitution

COMP 515, Fall 2015 (V.Sarkar)8

DO I = L, U, S
 K = K + N
 … = A(K)
ENDDO

DO I = L, U, S
 … = A(K + (I – L + S) / S * N)
ENDDO
K = K + (U – L + S) / S * N

IVSub without loop normalization

•  Problems:
— Inefficient code
— Nonlinear subscript

COMP 515, Fall 2015 (V.Sarkar)9

I = L
DO J = 1, (U-L+S)/S, 1
 K = K + N
 … = A (K)
 I = I + S
ENDDO

IVSub with Loop Normalization

I = L
DO J = 1, (U – L + S) / S, 1
 … = A (K + J * N)
ENDDO
K = K + floor((U – L) / S)*N
I = L + floor((U – L) / S)*S

COMP 515, Fall 2015 (V.Sarkar)10

•  Transformations to put more subscripts into standard form
— Loop Normalization
— Constant Propagation
— Induction Variable Substitution

•  Do loop normalization before induction-variable substitution
•  Leave optimizations to compilers

— Alternatively, perform preliminary transformations as look-aside
analyses (then you’re guaranteed to “do no harm”)

Summary

COMP 515, Fall 2015 (V.Sarkar)11

 
Dependence: Theory and Practice

(Loop Distribution,

Vectorization Algorithm)

Allen and Kennedy, Chapter 2

COMP 515, Fall 2015 (V.Sarkar)12

•  Can statements in loops which carry dependences be
vectorized?
 D0 I = 1, N

S1 A(I+1) = B(I) + C

S2 D(I) = A(I) + E

 ENDDO

•  Yes! Dependence: S1 δ1 S2 can be converted to:
 D0 I = 1, N ! A(2:N+1) = B(1:N) + C

S1 A(I+1) = B(I) + C

 END DO

 D0 I = 1, N ! D(1:N) = A(1:N) + E

S2 D(I) = A(I) + E

 ENDDO

Loop Distribution

COMP 515, Fall 2015 (V.Sarkar)13

DO I = 1, N

S1 A(I+1) = B(I) + C

S2 D(I) = A(I) + E

 ENDDO

Loop Distribution

•  transformed to:
DO I = 1, N

S1 A(I+1) = B(I) + C
ENDDO
DO I = 1, N
S2 D(I) = A(I) + E
ENDDO

•  leads to:
S1 A(2:N+1) = B(1:N) + C

S2 D(1:N) = A(1:N) + E

COMP 515, Fall 2015 (V.Sarkar)14

•  Loop distribution fails if there is a cycle of
dependences

DO I = 1, N

S1 A(I+1) = B(I) + C

S2 B(I+1) = A(I) + E

ENDDO

S1 δ1 S2 and S2 δ1 S1

•  Another example:
DO I = 1, N

S1 B(I) = A(I) + E

S2 A(I+1) = C(I) + D

ENDDO

Loop Distribution

COMP 515, Fall 2015 (V.Sarkar)15

procedure vectorize (L, D)
// L is the maximal loop nest containing the statement.
// D is the dependence graph for statements in L.
 find the set {S1, S2, ... , Sm} of maximal strongly-connected
 regions in the dependence graph D restricted to L (Tarjan);

 construct Lp from L by reducing each Si to a single node and
 compute Dp, the dependence graph naturally induced on Lp by D;

 let {p1, p2, ... , pm} be the m nodes of Lp numbered in an order
 consistent with Dp (use topological sort);

 for i = 1 to m do begin
 if pi contains a dependence cycle then
 generate a sequential DO-loop around the statements in pi;
 else
 directly rewrite pi in vector notation, vectorizing it with
 respect to every loop containing it;
 end
end vectorize

Simple Vectorization Algorithm

COMP 515, Fall 2015 (V.Sarkar)16

 DO I = 1, N

 DO J = 1, M

S1 A(I+1,J) = A(I,J) + B

 ENDDO

 ENDDO

•  Dependence from S1 to itself with d(i, j) = (1,0)
•  Key observation: Since dependence is at level 1, we can

vectorize the inner loop!
•  Can be converted to:

 DO I = 1, N

S1 A(I+1,1:M) = A(I,1:M) + B

 ENDDO

•  The simple algorithm does not capitalize on such
opportunities

Problems With Simple Vectorization

COMP 515, Fall 2015 (V.Sarkar)17

DO I = 1, N

S1 B(I) = A(I) + C

S2 A(I+1) = C(I) + D

ENDDO

1.  Compute the dependence graph for the above loop nest
2.  Is it possible to distribute the loops around S1 and S2?
3.  If your answer to #2 was yes, show the final code after loop

distribution? (Don’t worry about vectorization)

Worksheet (Lecture 7)
Name: _________________ Netid: ________________

COMP 515, Fall 2015 (V.Sarkar)18

COMP 515 Projects
•  Yuhan Peng, Maggie Tang

— DFGL transformations and OpenCL generation

•  Prasanth Chatarasi
— Polyhedral extensions for data race detection

•  Lucas Martinelli, Jonathan Sharman,
— Exploration of dependences and transformations in higher level OO

languages, with a focus on C++ language and libraries (RAJA,
Kokkos)

•  Jack Feser
— Exploration of ILP solvers for dependence analysis

•  Pete Curry, Lung Li
— OpenCL transformations for Digital Signal Processors

•  Zhipeng Wang
— Memory Hierarchy Management for iterative graph structures.

1
8

