
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Krishna Palem
Prof. Vivek Sarkar
Department of Computer Science
Rice University
{palem,vsarkar}@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 8 27 September 2013

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
2

Preliminary Transformations (contd)!

Chapter 4 of Allen and Kennedy

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
3 3

Constant Propagation!
•  Replace all variables that have constant values at runtime with

those constant values

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
4 4

Constant Propagation!

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
5 5

Constant Propagation!

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
6 6

Forward Expression Substitution!

 DO I = 1, 100
 K = I + 2
 A(K) = A(K) + 5
 ENDDO

DO I = 1, 100
 A(I+2) = A(I+2) + 5
ENDDO

•  Example

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
7 7

Forward Expression Substitution!
•  Need definition-use edges and control flow analysis
•  Need to guarantee that the definition is always executed on a

loop iteration before the statement into which it is substituted
•  Data structure to find out if a statement S is in loop L

— Test whether level-K loop containing S is equal to L

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
8 8

Induction Variable Substitution!
•  Definition: an auxiliary induction variable in a DO loop headed

by DO I = LB, UB, S is any variable that can be correctly
expressed as cexpr * I + iexprL at every location L where it is
used in the loop, where cexpr and iexprL are expressions that
do not vary in the loop, although different locations in the loop
may require substitution of different values of iexprL

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
9 9

Induction Variable Substitution!
•  Example:
DO I = 1, N
 A(I) = B(K) + 1
 K = K + 4
 …
 D(K) = D(K) + A(I)
ENDDO

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
10 1
0

Induction Variable Substitution!
•  More complex example
DO I = 1, N, 2
 K = K + 1
 A(K) = A(K) + 1
 K = K + 1
 A(K) = A(K) + 1
ENDDO
•  Alternative strategy is to recognize region invariance
DO I = 1, N, 2
 A(K+1) = A(K+1) + 1
 K = K+1 + 1
 A(K) = A(K) + 1
ENDDO

10

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
11 1
1

Induction Variable Substitution!
•  Driver

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
12 1
2

IVSub without loop normalization!
DO I = L, U, S
 K = K + N
 … = A(K)
ENDDO

DO I = L, U, S
 … = A(K + (I – L + S) / S * N)
ENDDO
K = K + (U – L + S) / S * N

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
13 1
3

IVSub without loop normalization!
•  Problem:

— Inefficient code
— Nonlinear subscript

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
14 1
4

IVSub with Loop Normalization!
I = 1
DO J = 1, (U-L+S)/S, 1
 K = K + N
 … = A (K)
 I = I + 1
ENDDO

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
15 1
5

IVSub with Loop Normalization!
I = 1
DO J = 1, (U – L + S) / S, 1
 … = A (K + J * N)
ENDDO
K = K + (U – L + S) / S * N
I = I + (U – L + S) / S

COMP 515, Fall 2013 (K. Palem, V.Sarkar)	
16 1
6

Summary!
•  Transformations to put more subscripts into standard form

— Loop Normalization
— Constant Propagation
— Induction Variable Substitution

•  Do loop normalization before induction-variable substitution
•  Leave optimizations to compilers

— Alternatively, perform preliminary transformations as look-aside
analyses (then you’re guaranteed to “do no harm”)

17

Homework #3 (Written Assignment)!
1. Solve exercise 3.6 in book

— This is case 4 of Lemma 3.3
— Read Definitions 3.1, 3.2, 3.3 and Lemmas 3.1, 3.2, 3.3 before starting

•  Due in class on Thursday, Oct 3rd

•  Honor Code Policy: All submitted homeworks are expected to be the
result of your individual effort. You are free to discuss course
material and approaches to problems with your other classmates,
the teaching assistants and the professor, but you should never
misrepresent someone else’s work as your own. If you use any
material from external sources, you must provide proper
attribution.

