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COMP 515 Projects
•  Yuhan Peng, Maggie Tang 

— DFGL transformations and OpenCL generation 

•  Prasanth Chatarasi 
— Polyhedral extensions for data race detection 

•  Lucas Martinelli, Jonathan Sharman,  
— Exploration of dependences and transformations in higher level OO 

languages, with a focus on C++ language and libraries (RAJA, 
Kokkos) 

•   Jack Feser 
— Exploration of ILP solvers for dependence analysis 

•  Pete Curry, Lung Li 
— OpenCL transformations for Digital Signal Processors 

•  Zhipeng Wang 
— Memory Hierarchy Management for iterative graph structures. 
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Simple Vectorization Algorithm (Recap)
procedure vectorize (L, D) 
// L is the maximal loop nest containing the statement.  
// D is the dependence graph for statements in L.  
1.  find the set {S1, S2, ... , Sm} of maximal strongly-connected regions in the 

dependence graph D restricted to L  (Tarjan); 
 
2.  construct Lp from L by reducing each Si to a single node and compute Dp, the 

dependence graph naturally induced on Lp by D; 
 
3.  let {p1, p2, ... , pm} be the m nodes of Lp numbered in an order consistent with Dp (use 

topological sort); 

4.   for i = 1 to m do begin 
     if pi is a dependence cycle then 

generate a DO-loop nest around the statements in pi; 
    else 

directly rewrite pi in Fortran 90, vectorizing it with respect to every loop 
containing it; 

   end 
end vectorize 
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Problems With Simple Vectorization
 DO I = 1, N 

   DO J = 1, M 

S1    A(I+1,J) = A(I,J) + B 

   ENDDO 

 ENDDO 

•  Dependence from S1 to itself with d(i, j) = (1,0) 
•  Key observation: Since dependence is at level 1, we can 

vectorize the inner loop! 
•  Can be converted to:  

 DO I = 1, N 

S1    A(I+1,1:M) = A(I,1:M) + B 

 ENDDO 

•  The simple algorithm does not capitalize on such 
opportunities 
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Advanced Vectorization Algorithm  
(Recursive “codegen” procedure)

procedure codegen(R, k, D); 
// R is the region for which we must generate code. 
// k is the minimum nesting level of possible parallel loops.   
// D is the dependence graph among statements in R..  
1.  find the set {S1, S2, ... , Sm} of maximal strongly-connected regions in the dependence graph D 

restricted to R;  
2.  construct Rp from R by reducing each Si to a single node and compute Dp, the dependence graph 

naturally induced on Rp by D; 
3.  let {p1, p2, ... , pm} be the m nodes of Rp numbered in an order consistent with Dp (topological sort); 
4.  for i = 1 to m do begin 

 if pi is cyclic then begin 
generate a level-k DO statement; 
let Di be the dependence graph consisting of all dependence edges in D that are at level k+1 

or greater and are internal to pi; 
codegen (pi, k+1, Di); 
generate the level-k ENDDO statement; 

 end 
 else 

generate a vector statement for pi in r(pi)-k+1 dimensions, where r (pi) is the number of loops 
containing pi; 

end 
 
codegen(L, 1, D); // Root call for recursive “codegen” procedure 
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Advanced Vectorization Algorithm
DO I = 1, 100 
S1   X(I) = Y(I) + 10 
 DO J = 1, 100 
S2      B(J) = A(J,N) 

   DO K = 1, 100 
S3        A(J+1,K)=B(J)+C(J,K) 

   ENDDO 
S4      Y(I+J) = A(J+1, N) 
 ENDDO 
ENDDO 

DO I = 1, 100 
   codegen({S2, S3, S4}, 2, D) 
ENDDO 
X(1:100) = Y(1:100) + 10 

•   codegen called at the outermost level 

•   S1 will be vectorized, and moved later due to topological sort 
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Advanced Vectorization Algorithm

DO I = 1, 100 
  DO J = 1, 100 
     codegen({S2, S3}, 3, D) 
  ENDDO 
S4  Y(I+1:I+100) = A(2:101,N) 
ENDDO 
 
X(1:100) = Y(1:100) + 10 

•   codegen ({S2, S3, S4}, 2, D) 

•   level-1 dependences are stripped 
off 
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Advanced Vectorization Algorithm

•   codegen ({S2, S3}, 3, D) 

•   level-2 dependences are stripped 
off 

DO I = 1, 100 
S1   X(I) = Y(I) + 10 
 DO J = 1, 100 
S2      B(J) = A(J,N) 

   DO K = 1, 100 
S3        A(J+1,K)=B(J)
+C(J,K) 

   ENDDO 
S4      Y(I+J) = A(J+1, N) 
 ENDDO 
ENDDO 

DO I = 1, 100 
  DO J = 1, 100 
    B(J) = A(J,N) 
    A(J+1,1:100)=B(J)+C(J,1:100) 
  ENDDO 

  Y(I+1:I+100) = A(2:101,N) 

ENDDO 

X(1:100) = Y(1:100) + 10 
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Advanced Vectorization Algorithm  
(shown as distributed parallel loops)

DO I = 1, 100 
S1   X(I) = Y(I) + 10 
 DO J = 1, 100 
S2      B(J) = A(J,N) 

   DO K = 1, 100 
S3        A(J+1,K)=B(J)
+C(J,K) 

   ENDDO 
S4      Y(I+J) = A(J+1, N) 
 ENDDO 
ENDDO 

DO I = 1, 100 
  DO J = 1, 100 
S2:    B(J) = A(J,N) 
    DOALL K = 1, 100 
S3:     A(J+1,K)=B(J)+C(J,K) 
    ENDDO 
  ENDDO 
  DOALL J = 1, 100 

S4:   Y(I+J) = A(J+1,N) 

  END DO 

ENDDO 

DOALL I = 1, 100 

S1:  X(I) = Y(I) + 10 

END DO 
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Enhancing Fine-Grained Parallelism

Chapter 5 of Allen and Kennedy 
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Fine-Grained Parallelism
 
 
Techniques to enhance fine-grained (vector) parallelism: 
•  Loop Interchange 
•  Scalar Expansion  
•  Scalar Renaming 
•  Array Renaming 
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Loop Shifting (Permutation)
•  Motivation: Identify loops which can be 

moved and interchange them to “optimal” 
nesting levels 

•  Theorem 5.3 In a perfect loop nest, if loops 
at level i, i+1,...,i+n  carry no 
dependence, it is always legal to shift these 
loops inside of loop i+n+1. Furthermore, 
these loops will not carry any dependences in 
their new position. 
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Loop Shifting
 DO I = 1, N 
   DO J = 1, N 

      DO K = 1, N 

S         A(I,J) = A(I,J) + B(I,K)*C(K,J) 

       ENDDO 

   ENDDO 

 ENDDO 

•  S has true, anti and output dependences on itself, hence 
codegen will fail as recurrence exists at innermost level 

•  Use loop shifting to shift loops I and J inside loop K: 
 DO K = 1, N 

    DO I = 1, N 

      DO J = 1, N 

S        A(I,J) = A(I,J) + B(I,K)*C(K,J) 

      ENDDO 

    ENDDO 

 ENDDO 

 I  J K 
(=, =, <) 
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Loop Shifting
 DO K= 1, N 

    DO I = 1, N 

      DO J = 1, N 

S        A(I,J) = A(I,J) + B(I,K)*C(K,J) 

      ENDDO 

    ENDDO 

 ENDDO 

codegen vectorizes to: 
 DO K = 1, N 
  

     A(1:N,1:N) = A(1:N,1:N) + SPREAD(B(1:N,K),2)*SPREAD(C(K,1:N),1) 

 

 ENDDO 

 K  I J 
(<, =, =) 
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•  Loop Shifting doesn’t always find the best loop to move.  Consider: 
    DO I = 1, N 
      DO J = 1, M 

S        A(I+1,J+1) = A(I,J) + A(I+1,J) 

      ENDDO 

  ENDDO 

•  Direction matrix:    <   <  
             =   <  

•  Loop shifting algorithm will fail to uncover vector loops; however, 
interchanging the loops can lead to: 

   DO J = 1, M 

       A(2:N+1,J+1) = A(1:N,J) + A(2:N+1,J) 

   ENDDO 

•  Need a more general algorithm 

Loop Selection

<   <  

<   = 
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Loop Selection
•  Loop selection: 

— Select a loop at nesting level p ≥ k that can be safely moved 
outward to level k and shift the loops at level k, k+1, …, p-1 
inside it 

K              P P   K 

… … … … 
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Fully Permutable Loop Nest
•  A contiguous set of k ≥ 1 loops, ij,…,ij+k-1 is fully permutable if 

all permutations of ij,…,ij+k-1are legal 

•  Data dependence test: Loops ij,…,ij+k-1 are fully permutable if 
for each dependence vector (d1,…,dn) carried at levels j … j
+k-1, each of dj,…,dj+k-1 is non-negative 

•  Fundamental result (to be discussed later in course): a set of k 
fully permutable loops can be transformed using only 
Interchange, Reversal and Skewing transformations into an 
equivalent set of k loops where k-1 of the loops are parallel 
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S1      T$(1:N) = A(1:N) 

S2      A(1:N) = B(1:N) 

S3      B(1:N) = T$(1:N) 

        T = T$(N) 

Scalar Expansion and its use in Removing Anti and 
Output Dependences

      
   DO I = 1, N 
S1     T = A(I) 
S2     A(I) = B(I) 
S3     B(I) = T 
    ENDDO 

•  Scalar Expansion: 
    DO I = 1, N 
S1     T$(I) = A(I) 
S2     A(I) = B(I) 
S3     B(I) = T$(I) 
    ENDDO 
    T = T$(N) 

•  leads to: 
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Scalar Expansion
•  However, scalar expansion (or any other form of storage 

duplication) is not useful in removing true dependences. 
Consider: 

    DO I = 1, N 
      T = T + A(I) + A(I+1) 

      A(I) = T 

  ENDDO 

•  Scalar expansion gives us: 
   T$(0) = T 

   DO I = 1, N 

S1      T$(I) = T$(I-1) + A(I) + A(I+1) 

S2      A(I) = T$(I) 

   ENDDO 

   T = T$(N) 
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Scalar Expansion: Safety
•  Scalar expansion is always safe 
•  When is it useful?  

— Brute force approach: Expand all scalars, vectorize, shrink all 
unnecessary expansions. 

— However, we want to predict when expansion is useful i.e., when 
scalar expansion can enable a dependence edge to be deleted 

•  Dependences due to reuse of memory location vs. reuse of 
values 

— Dependences due to reuse of values must be preserved (true 
dependences) 

— Dependences due to reuse of memory location can be deleted by 
expansion (anti & output dependences) 
–  This is also why functional languages are easier to parallelize, 

at the cost of increased memory overhead 



COMP 515, Fall 2015 (V.Sarkar)21 

Scalar Renaming
   DO I = 1, 100 
S1    T = A(I) + B(I) 

S2    C(I) = T + T 

S3    T = D(I) - B(I) 

S4    A(I+1) = T * T 

  ENDDO 

•  Renaming scalar T: 
DO I = 1, 100 

S1    T1 = A(I) + B(I) 

S2    C(I) = T1 + T1 

S3    T2 = D(I) - B(I) 

S4    A(I+1) = T2 * T2 

  ENDDO 
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Scalar Renaming
•  will lead to: 
S3      T2$(1:100) = D(1:100) - B(1:100) 

S4      A(2:101) = T2$(1:100) * T2$(1:100) 

S1      T1$(1:100) = A(1:100) + B(1:100) 

S2      C(1:100) = T1$(1:100) + T1$(1:100) 

        T = T2$(100) 
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Homework #3 (Written Assignment)
1. Solve exercise 5.6 in book 

— Your solution should be legal for all values of K (note that the value of K 
is invariant in loop I) 

 

Exercise 5.6: What vector code should be generated for the 
following loop? 
DO I = 1, 100 
    A(I) = B(K) + C(I) 
    B(I+1) = A(I) + D(I) 
END DO 

 
•  Due in class on Thursday, Oct 8th 

 


