COMP 515: Advanced Compilation for Vector and Parallel Processors

Prof. Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Projects

- Yuhan Peng, Maggie Tang
-DFGL transformations and OpenCL generation
- Prasanth Chatarasi
-Polyhedral extensions for data race detection
- Lucas Martinelli, Jonathan Sharman,
- Exploration of dependences and transformations in higher level 00 languages, with a focus on C++ language and libraries (RAJA, Kokkos)
- Jack Feser
- Exploration of ILP solvers for dependence analysis
- Pete Curry, Lung Li
-OpenCL transformations for Digital Signal Processors
- Zhipeng Wang
- Memory Hierarchy Management for iterative graph structures.

Simple Vectorization Algorithm (Recap)

procedure vectorize (L, D)
// L is the maximal loop nest containing the statement.
// D is the dependence graph for statements in L .

1. find the set $\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ of maximal strongly-connected regions in the dependence graph D restricted to L (Tarjan);
2. construct L_{p} from L by reducing each S_{i} to a single node and compute D_{p}, the dependence graph naturally induced on L_{p} by D;
3. let $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ be the m nodes of L_{p} numbered in an order consistent with D_{p} (use topological sort);
4. for $i=1$ to m do begin if p_{i} is a dependence cycle then
generate a DO-loop nest around the statements in p_{i};
else
directly rewrite p_{i} in Fortran 90, vectorizing it with respect to every loop containing it;
end
end vectorize

Problems With Simple Vectorization

```
    DO I = 1, N
    DO J = 1, M
    A(I+1,J) = A(I,J) + B
    ENDDO
ENDDO
```

- Dependence from S_{1} to itself with $d(i, j)=(1,0)$
- Key observation: Since dependence is at level 1 , we can vectorize the inner loop!
- Can be converted to:

```
    DO I = 1, N
    S A A(I+1,1:M) = A(I,1:M) + B
    ENDDO
```

- The simple algorithm does not capitalize on such opportunities

Advanced Vectorization Algorithm (Recursive "codegen" procedure)

```
procedure codegen(R, k, D);
// R is the region for which we must generate code.
// k is the minimum nesting level of possible parallel loops.
// D is the dependence graph among statements in R..
1. find the set {\mp@subsup{S}{1}{},\mp@subsup{S}{2}{},\ldots,S}\mp@subsup{S}{m}{}}\mathrm{ of maximal strongly-connected regions in the dependence graph D
    restricted to R;
2. construct }\mp@subsup{R}{p}{}\mathrm{ from R by reducing each Si}\mp@subsup{S}{i}{}\mathrm{ to a single node and compute }\mp@subsup{D}{p}{}\mathrm{ , the dependence graph
    naturally induced on }\mp@subsup{R}{p}{}\mathrm{ by D;
    3. let {\mp@subsup{p}{1}{},\mp@subsup{p}{2}{},\ldots,\mp@subsup{p}{m}{}}\mathrm{ be the m nodes of R R numbered in an order consistent with D D (topological sort);}
    4. for i=1 to m do begin
    if }\mp@subsup{p}{i}{}\mathrm{ is cyclic then begin
        generate a level-k DO statement;
        let D}\mp@subsup{D}{i}{}\mathrm{ be the dependence graph consisting of all dependence edges in D that are at level k+1
            or greater and are internal to p;
        codegen ( }\mp@subsup{p}{i}{},k+1,\mp@subsup{D}{i}{})\mathrm{ ;
        generate the level-k ENDDO statement;
        end
        else
            generate a vector statement for }\mp@subsup{p}{i}{}\mathrm{ in }r(\mp@subsup{p}{i}{})-k+1 dimensions, where r ( (p) is the number of loop
            containing }\mp@subsup{p}{i}{}
    end
    codegen(L, 1, D); // Root call for recursive "codegen" procedure
```


Advanced Vectorization Algorithm

```
DO I = 1, 100
S ( X(I) = Y(I) + 10
    DO J = 1, 100
                                    B(J) = A(J,N)
    DO K = 1, 100
S S A (J+1,K)=B(J)+C(J,K)
    ENDDO
    Y(I+J) = A(J+1,N)
S
ENDDO
```

- codegen called at the outermost level
- S_{1} will be vectorized, and moved later due to topological sort

```
DO I = 1, 100
    codegen({S 2, S S, S S }, 2, D)
ENDDO
X(1:100) = Y(1:100) + 10
```


Advanced Vectorization Algorithm

- codegen ($\left.\left\{\mathbf{S}_{2}, \mathbf{S}_{3}, \mathbf{S}_{4}\right\}, 2, \mathrm{D}\right)$
- level-1 dependences are stripped off

```
DO I = 1, 100
    DO J = 1, 100
        codegen({S S, S } , 3, D)
    ENDDO
S S Y(I+1:I+100) = A (2:101,N)
ENDDO
X(1:100) = Y(1:100) + 10
```


Advanced Vectorization Algorithm

- codegen ($\left.\left\{\mathrm{S}_{2}, \mathrm{~S}_{3}\right\}, \mathbf{3}, \mathrm{D}\right)$
- level-2 dependences are stripped off

DO I $=1,100$	
DO J = 1, 100	
S_{2}	$\mathrm{B}(\mathrm{J})=\mathrm{A}(\mathrm{J}, \mathrm{N})$
	DO $\mathrm{K}=1,100$
S_{3}	$\mathrm{A}(\mathrm{J}+1, \mathrm{~K})=\mathrm{B}(\mathrm{J})$
+C (J, K)	
	ENDDO
S_{4} ENDDO	$\mathrm{Y}(\mathrm{I}+\mathrm{J})=\mathrm{A}(\mathrm{J}+1, \mathrm{~N})$
ENDDO	

$$
\begin{aligned}
& \text { DO } I=1,100 \\
& \text { DO } J=1,100 \\
& \quad B(J)=A(J, N) \\
& \quad A(J+1,1: 100)=B(J)+C(J, 1: 100) \\
& \quad \text { ENDDO } \\
& Y(I+1: I+100)=A(2: 101, N) \\
& \text { ENDDO } \\
& X(1: 100)=Y(1: 100)+10
\end{aligned}
$$

Advanced Vectorization Algorithm (shown as distributed parallel loops)

```
DO I = 1, 100
    DO J = 1, 100
S2:
                                \(\mathrm{B}(\mathrm{J})=\mathrm{A}(\mathrm{J}, \mathrm{N})\)
        DOALL K = 1, 100
S3: \(\quad A(J+1, K)=B(J)+C(J, K)\)
    ENDDO
    ENDDO
    DOALL J = 1, 100
S4: \(\quad \mathrm{Y}(\mathrm{I}+\mathrm{J})=\mathrm{A}(\mathrm{J}+1, \mathrm{~N})\)
    END DO
ENDDO
DOALL I = 1, 100
S1: \(X(I)=Y(I)+10\)
END DO
```

```
                                    DO I = 1, 100
                                    S
                                    DO K = 1, 100
S S
                                    A (J+1,K) =B (J)
ENDDO
S4
ENDDO
```


ENDDO

$$
\mathrm{Y}(\mathrm{I}+\mathrm{J})=\mathrm{A}(\mathrm{~J}+1, \mathrm{~N})
$$

Enhancing Fine-Grained Parallelism

Chapter 5 of Allen and Kennedy

Fine-Grained Parallelism

Techniques to enhance fine-grained (vector) parallelism:

- Loop Interchange
- Scalar Expansion
- Scalar Renaming
- Array Renaming

Loop Shifting (Permutation)

- Motivation: Identify loops which can be moved and interchange them to "optimal" nesting levels
- Theorem 5.3 In a perfect loop nest, if loops at level $i, i+1, \ldots, i+n$ carry no dependence, it is always legal to shift these loops inside of loop $i+n+1$. Furthermore, these loops will not carry any dependences in their new position.

Loop Shifting

```
DO I = 1, N
    DO J = 1, N
    DO K=1,N I I J K
        A(I,J)=A(I,J)+B(I,K)*C(K,J) (=, =, <)
        ENDDO
    ENDDO
ENDDO
```

- S has true anti and output dependences on itself, hence codegen will fail as recurrence exists at innermost level
- Use loop shifting to shift loops I and J inside loop K:

DO $K=1, N$
DO $I=1, N$
DO $J=1, N$
$S \quad A(I, J)=A(I, J)+B(I, K) * C(K, J)$
ENDDO
ENDDO
ENDDO

Loop Shifting

```
DO K= 1, N
    DO I = 1, N
        DO J = 1,N K I J
        A(I,J) =A(I,J) + B(I,K)*C(K,J) (<, =, =)
        ENDDO
    ENDDO
ENDDO
```

codegen vectorizes to:
DO $K=1, N$

$$
A(1: N, 1: N)=A(1: N, 1: N)+\operatorname{SPREAD}(B(1: N, K), 2) * \operatorname{SPREAD}(C(K, 1: N), 1)
$$

ENDDO

Loop Selection

- Loop Shifting doesn't always find the best loop to move. Consider:

DO $\mathrm{J}=1$, M

```
A(I+1,J+1) = A(I,J) + A(I+1,J)
```

ENDDO
ENDDO

- Direction matrix:

$$
\left(\begin{array}{ll}
< & < \\
= & <
\end{array}\right]
$$

- Loop shifting algorithm will fail to uncover vector loops; however, interchanging the loops can lead to:

```
DO J = 1, M
    A(2:N+1,J+1) = A(1:N,J) + A(2:N+1,J)
```

ENDDO

- Need a more general algorithm

$$
\left(\begin{array}{ll}
< & < \\
< & =
\end{array}\right)
$$

Loop Selection

- Loop selection:
- Select a loop at nesting level $p \geq k$ that can be safely moved outward to level k and shift the loops at level $k, k+1, \ldots, p-1$ inside it

Fully Permutable Loop Nest

- A contiguous set of $k \geq 1$ loops, i_{j}, \ldots, i_{j+k-1} is fully permutable if all permutations of i_{j}, \ldots, i_{j+k-1} are legal
- Data dependence test: Loops i_{j}, \ldots, i_{j+k-1} are fully permutable if for each dependence vector (d_{1}, \ldots, d_{n}) carried at levels $j \ldots j$ $+\mathrm{k}-1$, each of $\mathrm{d}_{\mathrm{j}}, \ldots, \mathrm{d}_{\mathrm{j}+\mathrm{k}-1}$ is non-negative
- Fundamental result (to be discussed later in course): a set of k fully permutable loops can be transformed using only Interchange, Reversal and Skewing transformations into an equivalent set of k loops where $k-1$ of the loops are parallel

Scalar Expansion and its use in Removing Anti and Output Dependences

- Scalar Expansion:

DO $I=1, N$
$S_{1} \quad T \$(I)=A(I)$
$S_{2} \quad A(I)=B(I)$
$S_{3} \quad B(I)=T \$(I)$
ENDDO
$\mathrm{T}=\mathrm{T}$ (N)

- leads to:

$$
\begin{array}{ll}
S_{1} & T \$(1: N)=A(1: N) \\
S_{2} & A(1: N)=B(1: N) \\
S_{3} & B(1: N)=T \$(1: N) \\
& T=T \$(N)
\end{array}
$$

Scalar Expansion

- However, scalar expansion (or any other form of storage duplication) is not useful in removing true dependences. Consider:

```
DO I = 1, N
    T=T +A(I) + A(I+1)
    A(I) = T
```

ENDDO

- Scalar expansion gives us:

```
    T$(0) = T
    DO I = 1,N
Si T$(I) = T$(I-1) +A(I) +A(I+I)
S A A I) = T$(I)
    ENDDO
    T = T$(N)
```


Scalar Expansion: Safety

- Scalar expansion is always safe
- When is it useful?
-Brute force approach: Expand all scalars, vectorize, shrink all unnecessary expansions.
-However, we want to predict when expansion is useful i.e., when scalar expansion can enable a dependence edge to be deleted
- Dependences due to reuse of memory location vs. reuse of values
- Dependences due to reuse of values must be preserved (true dependences)
- Dependences due to reuse of memory location can be deleted by expansion (anti \& output dependences)
- This is also why functional languages are easier to parallelize, at the cost of increased memory overhead

Scalar Renaming

- Renaming scalar T:

```
DO I = 1, 100
```


Scalar Renaming

- will lead to:

```
S T2$(1:100) = D(1:100) - B(1:100)
S4 A(2:101) = T2$(1:100) * T2$(1:100)
S T1$(1:100) = A(1:100) + B(1:100)
S C C(1:100) = T1$(1:100) + T1$(1:100)
    T = T2$(100)
```


Homework \#3 (Written Assignment)

1. Solve exercise 5.6 in book

- Your solution should be legal for all values of K (note that the value of K is invariant in loop I)

Exercise 5.6: What vector code should be generated for the following loop?
DO $I=1,100$

$$
\begin{aligned}
& A(I)=B(K)+C(I) \\
& B(I+1)=A(I)+D(I)
\end{aligned}
$$

END DO

- Due in class on Thursday, Oct $8^{\text {th }}$

