COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Vivek Sarkar

Department of Computer Science
Rice University
vsarkar®@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 8 22 September 2015

COMP 515 Projects

* Yuhan Peng, Maggie Tang

—DF6L transformations and OpenCL generation

Prasanth Chatarasi
—Polyhedral extensions for data race detection

Lucas Martinelli, Jonathan Sharman,

—Exploration of dependences and transformations in higher level OO
languages, with a focus on C++ language and libraries (RAJA,
Kokkos)

Jack Feser
—Exploration of ILP solvers for dependence analysis

Pete Curry, Lung Li
—OpenCL transformations for Digital Signal Processors
Zhipeng Wang

— Memory Hierarchy Management for iterative graph structures.

COMP 515, Fall 2015 (V.Sarkar)

Simple Vectorization Algorithm (Recap)

procedure vectorize (L, D)

/I L is the maximal loop nest containing the statement.

/I D is the dependence graph for statements in L.

1. find the set {S,, S,, ..., S} of maximal strongly-connected regions in the
dependence graph D restricted to L (Tarjan);

2. construct L, from L by reducing each S; to a single node and compute D, the
dependence graph naturally induced on L, by D;

3. let {p1, P2 - P} be the m nodes of L, numbered in an order consistent with D, (use
topological sort);

4. fori=1to m do begin
if p, is a dependence cycle then
generate a DO-loop nest around the statements in p;;
else
directly rewrite p; in Fortran 90, vectorizing it with respect to every loop
containing it;
end
end vectorize

COMP 515, Fall 2015 (V.Sarkar)

Problems With Simple Vectorization

DO I =1, N
DO J =1, M
S, A(I+1,J) = A(I,J) + B
ENDDO

ENDDO
* Dependence from S; to itself with d(i, j) = (1,0)

* Key observation: Since dependence is at level 1, we can
vectorize the inner loop!

* Can be converted to:
DO I =1, N

Sy A(I+1,1:M) = A(I,1:M) + B
ENDDO

* The simple algorithm does not capitalize on such
opportunities

4 COMP 515, Fall 2015 (V.Sarkar)

Advanced Vectorization Algorithm
(Recursive “codegen” procedure)

procedure codegen(R, k, D);
/I R is the region for which we must generate code.
/Il k is the minimum nesting level of possible parallel loops.
/I D is the dependence graph among statements in R..
1. find the set {S4, S,, ..., S} of maximal strongly-connected regions in the dependence graph D
restricted to R;
2. construct R, from R by reducing each §; to a single node and compute D,, the dependence graph
naturally induced on R, by D;
3. let {P1, P2, --- » P} be the m nodes of R, numbered in an order consistent with D, (topological sort);
4. fori=1tom do begin
if p; is cyclic then begin
generate a level-k DO statement;
let D, be the dependence graph consisting of all dependence edges in D that are at level k+1
or greater and are internal to p;
codegen (p;, k+1, D,);
generate the level-k ENDDO statement;
end
else
generate a vector statement for p; in r(p;)-k+1 dimensions, where r (p,) is the number of loops
containing p;;
end

codegen(L, 1, D); // Root call for recursive “codegen” procedure

5 COMP 515, Fall 2015 (V.Sarkar)

Advanced Vectorization Algorithm

DO I =1, 100

S, X(I) = Y(I) + 10
DO J = 1, 100
S, B(J) = A(J,N)
DO K =1, 100
S, A (J+1,K) =B (J) +C (J,K)
ENDDO
S, Y (I+J) = A(J+1, N)
ENDDO
ENDDO

* codegen called at the outermost level

* S, will be vectorized, and moved later due to topological sort

DO I =1, 100

codegen ({S,, S;, S,}, 2, D)
ENDDO
X(1:100) = ¥(1:100) + 10

6 COMP 515, Fall 2015 (V.Sarkar)

Advanced Vectorization Algorithm

* codegen ({S,, S3, 844, 2, D)

* level-1 dependences are stripped

of f

DO I =1, 100
DO J =1, 100
codegen ({S,, S35}, 3, D)
ENDDO
S, Y(I+1:I+100) = A(2:101,N)
ENDDO

X(1:100) = Y¥(1:100) + 10

COMP 515, Fall 2015 (V.Sarkar)

Advanced Vectorization Algorithm

W

S, X(I) = Y(I) + 10
DO Jg =1, 100

* codegen ({S,, S5}, 3, D) s, B(J) = A(J.N)

. DO K = 1, 100

* level-2 dependences are stripped S, A(J+1,K) =B (J)
+C (J,K)

Off ENDDO
S, Y(I+J) = A(J+1, N)
ENDDO
ENDDO

DO I =1, 100
DO J =1, 100
B(J) = A(J,N)

A(J+1,1:100)=B(J)+C(J,1:100)
ENDDO 5

Y(I+1:I+100) = A(2:101,N)

ENDDO e
X(1:100) = Y¥(1:100) + 10

COMP 515, Fall 2015 (V.Sarkar)

Advanced Vectorization Algorithm
(shown as distributed parallel loops)

DO T =1, 100

— S X(I) = Y(I) + 10
DO I =1, 100]l:)OJ=1, 100
DO J =1, 100 S, B(J) = A(J,N)
SZ: B(J) =A(J,N) DO K =1, 100
S35 A(J+1,K)=B(J)
DOALL K = 1, 100 +C (J,K)
. _ ENDDO
S3: A (J+1,K)=B(J)+C(J,K) s, Y(I+3) = A(J+1, N)
ENDDO ENDDO
ENDDO
ENDDO

DOALL J =1, 100

S4: Y(I+J) = A(J+1,N)
END DO a
0

ENDDO

DOALL I = 1, 100
S1: X(I) = Y(I) + 10

END DO

e COMP 515, Fall 2015 (V. Sarkar)

10

Enhancing Fine-Grained Parallelism

Chapter 5 of Allen and Kennedy

COMP 515, Fall 2015 (V.Sarkar)

Fine-Grained Parallelism

Techniques to enhance fine-grained (vector) parallelism:
* Loop Interchange

* Scalar Expansion
* Scalar Renaming
* Array Renaming

11 COMP 515, Fall 2015 (V.Sarkar)

Loop Shifting (Permutation)

* Motivation: Identify loops which can be

12

moved and interchange them to “optimal”
nesting levels

Theorem 5.3 In a perfect loop nest, if loops
at level i, i+1,...,i+n carry no
dependence, it is always legal to shift these
loops inside of loop i+n+1. Furthermore,
these loops will not carry any dependences in
their new position.

COMP 515, Fall 2015 (V.Sarkar)

Loop Shifting

DO J =1, N
1,

DO K = N I JK
S A(I,J) = A(I,J) + B(I,K)*C(K,J) =, =, <)
ENDDO
ENDDO

ENDDO

* S has true, anti and output dependences on itself, hence
codegen will fail as recurrence exists at innermost level

* Use loop shifting to shift loops I and J inside loop K:
DO K =1, N
DO I =1, N
DO J =1, N
S A(I,J) = A(I,J) + B(I,K)*C(K,J)
ENDDO
ENDDO
ENDDO

13 COMP 515, Fall 2015 (V.Sarkar)

Loop Shifting

DO K= 1, N
DO I =1, N
DO J =1, N K IJ
S A(I,J) = A(I,J) + B(I,K)*C(K,J) (‘, =, =)
ENDDO
ENDDO
ENDDO

codegen vectorizes to:

DO K = 1, N

A(l:N,1:N) = A(1:N,1:N) + SPREAD(B(1:N,K),2)*SPREAD(C(K,1:N),1)

ENDDO

14 COMP 515, Fall 2015 (V.Sarkar)

Loop Selection
* Loop Shifting doesn’ t always find the best loop to move. Consider:

DO T =1, N
DO J =1, M
S A(I+1,J+1) = A(I,J) + A(I+1,J)
ENDDO
ENDDO
* Direction matrix: [< <]
<

* Loop shifting algorithm will fail fo uncover vector loops; however,
interchanging the loops can lead to:

DO J =1, M

A(2:N+1,J+1) = A(1:N,J) + A(2:N+1,J)
ENDDO
. < <
* Need a more general algorithm []
< =

15 COMP 515, Fall 2015 (V.Sarkar)

Loop Selection

* Loop selection:

—Select a loop at nesting level p = k that can be safely moved
outward to level k and shift the loops at level k, k+1, .., p-1
inside it

K P P K

16 COMP 515, Fall 2015 (V.Sarkar)

Fully Permutable Loop Nest

* A contiguous set of k 2 1 loops, ij,...,ij.k ¢ is fully permutable if
all permutations of ij, .., 1j.k-100€ legal

* Data dependence test: Loops i, ...,i;..; are fully permutable if
for each dependence vector (d,,...,d,) carried at levels j ... j
+k-1, each of d;,...,d;,.; is non-negative

* Fundamental result (to be discussed later in course): a set of k
fully permutable loops can be transformed using only
Interchange, Reversal and Skewing transformations into an
equivalent set of k loops where k-1 of the loops are parallel

17 COMP 515, Fall 2015 (V.Sarkar)

Scalar Expansion and its use in Removing Anti and
Output Dependences

DO I =1, N

S, TS(I) = A(I)
S, A(N(I)
S, B(I) = TS$(I)
ENDDO
T = T$(N)
* leads to: S, TS (1:N) = A(1:N)
S, A(1:N) = B(1:N)
S, B(1:N) = TS (1:N)

T = TS$(N)

18 COMP 515, Fall 2015 (V.Sarkar)

Scalar Expansion

* However, scalar expansion (or any other form of storage
duplication) is not useful in removing true dependences.
Consider:

DO I =1, N

* Scalar expansion gives us:

TS (0) = T

DO I =1, N
S, T$(I) = TS(I-1) + A(I) + A(I+1)
S, A(I) = TS$(I)

ENDDO

T = TS (N)

19 COMP 515, Fall 2015 (V.Sarkar)

20

Scalar Expansion: Safety

Scalar expansion is always safe

When is it useful?

—Brute force approach: Expand all scalars, vectorize, shrink all
unnecessary expansions.

—However, we want to predict when expansion is useful i.e., when
scalar expansion can enable a dependence edge to be deleted

Dependences due to reuse of memory location vs. reuse of
values

— Dependences due to reuse of values must be preserved (true
dependences)

— Dependences due to reuse of memory location can be deleted by
expansion (anti & output dependences)

- This is also why functional languages are easier to parallelize,
at the cost of increased memory overhead

COMP 515, Fall 2015 (V.Sarkar)

Scalar Renaming

ENDDO

* Renaming scalar T:
DO I =1, 100

S, A(I) + B(I)
S, = T1 + T1

S, T2 = D(I) - B(I)
S Am* T2

END

21 COMP 515, Fall 2015 (V.Sarkar)

Scalar Renaming

* will lead to:

S, T2$(1:100) = D(1:100) - B(1:100)
S, A(2:101) = T2$(1:100) * T2$(1:100)
S, T1$(1:100) = A(1:100) + B(1:100)
S, C(1:100) = T1$(1:100) + T1s$(1:100)

T = T2$(100)

|
22 COMP 515, Fall 2015 (V.Sarkar)

Homework #3 (Written Assignment)

1. Solve exercise 5.6 in book

—Your solution should be legal for all values of K (note that the value of K
is invariant in loop I)

Exercise 5.6: What vector code should be generated for the
following loop?

DOI-=1,100
A(T) = B(K) + C(I)
B(I+1) = A(T) + D(T)
END DO

* Due in class on Thursday, Oct 8

23 COMP 515, Fall 2015 (V.Sarkar)

