
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 8 22 September 2015

COMP 515, Fall 2015 (V.Sarkar)2

COMP 515 Projects
•  Yuhan Peng, Maggie Tang

— DFGL transformations and OpenCL generation

•  Prasanth Chatarasi
— Polyhedral extensions for data race detection

•  Lucas Martinelli, Jonathan Sharman,
— Exploration of dependences and transformations in higher level OO

languages, with a focus on C++ language and libraries (RAJA,
Kokkos)

•  Jack Feser
— Exploration of ILP solvers for dependence analysis

•  Pete Curry, Lung Li
— OpenCL transformations for Digital Signal Processors

•  Zhipeng Wang
— Memory Hierarchy Management for iterative graph structures.

COMP 515, Fall 2015 (V.Sarkar)3

Simple Vectorization Algorithm (Recap)
procedure vectorize (L, D)
// L is the maximal loop nest containing the statement.
// D is the dependence graph for statements in L.
1.  find the set {S1, S2, ... , Sm} of maximal strongly-connected regions in the

dependence graph D restricted to L (Tarjan);

2.  construct Lp from L by reducing each Si to a single node and compute Dp, the

dependence graph naturally induced on Lp by D;

3.  let {p1, p2, ... , pm} be the m nodes of Lp numbered in an order consistent with Dp (use

topological sort);

4.  for i = 1 to m do begin
 if pi is a dependence cycle then

generate a DO-loop nest around the statements in pi;
 else

directly rewrite pi in Fortran 90, vectorizing it with respect to every loop
containing it;

 end
end vectorize

COMP 515, Fall 2015 (V.Sarkar)4

Problems With Simple Vectorization
 DO I = 1, N

 DO J = 1, M

S1 A(I+1,J) = A(I,J) + B

 ENDDO

 ENDDO

•  Dependence from S1 to itself with d(i, j) = (1,0)
•  Key observation: Since dependence is at level 1, we can

vectorize the inner loop!
•  Can be converted to:

 DO I = 1, N

S1 A(I+1,1:M) = A(I,1:M) + B

 ENDDO

•  The simple algorithm does not capitalize on such
opportunities

COMP 515, Fall 2015 (V.Sarkar)5

Advanced Vectorization Algorithm  
(Recursive “codegen” procedure)

procedure codegen(R, k, D);
// R is the region for which we must generate code.
// k is the minimum nesting level of possible parallel loops.
// D is the dependence graph among statements in R..
1.  find the set {S1, S2, ... , Sm} of maximal strongly-connected regions in the dependence graph D

restricted to R;
2.  construct Rp from R by reducing each Si to a single node and compute Dp, the dependence graph

naturally induced on Rp by D;
3.  let {p1, p2, ... , pm} be the m nodes of Rp numbered in an order consistent with Dp (topological sort);
4.  for i = 1 to m do begin

 if pi is cyclic then begin
generate a level-k DO statement;
let Di be the dependence graph consisting of all dependence edges in D that are at level k+1

or greater and are internal to pi;
codegen (pi, k+1, Di);
generate the level-k ENDDO statement;

 end
 else

generate a vector statement for pi in r(pi)-k+1 dimensions, where r (pi) is the number of loops
containing pi;

end

codegen(L, 1, D); // Root call for recursive “codegen” procedure

COMP 515, Fall 2015 (V.Sarkar)6

Advanced Vectorization Algorithm
DO I = 1, 100
S1 X(I) = Y(I) + 10
 DO J = 1, 100
S2 B(J) = A(J,N)

 DO K = 1, 100
S3 A(J+1,K)=B(J)+C(J,K)

 ENDDO
S4 Y(I+J) = A(J+1, N)
 ENDDO
ENDDO

DO I = 1, 100
 codegen({S2, S3, S4}, 2, D)
ENDDO
X(1:100) = Y(1:100) + 10

•  codegen called at the outermost level

•  S1 will be vectorized, and moved later due to topological sort

COMP 515, Fall 2015 (V.Sarkar)7

Advanced Vectorization Algorithm

DO I = 1, 100
 DO J = 1, 100
 codegen({S2, S3}, 3, D)
 ENDDO
S4 Y(I+1:I+100) = A(2:101,N)
ENDDO

X(1:100) = Y(1:100) + 10

•  codegen ({S2, S3, S4}, 2, D)

•  level-1 dependences are stripped
off

COMP 515, Fall 2015 (V.Sarkar)8

Advanced Vectorization Algorithm

•  codegen ({S2, S3}, 3, D)

•  level-2 dependences are stripped
off

DO I = 1, 100
S1 X(I) = Y(I) + 10
 DO J = 1, 100
S2 B(J) = A(J,N)

 DO K = 1, 100
S3 A(J+1,K)=B(J)
+C(J,K)

 ENDDO
S4 Y(I+J) = A(J+1, N)
 ENDDO
ENDDO

DO I = 1, 100
 DO J = 1, 100
 B(J) = A(J,N)
 A(J+1,1:100)=B(J)+C(J,1:100)
 ENDDO

 Y(I+1:I+100) = A(2:101,N)

ENDDO

X(1:100) = Y(1:100) + 10

COMP 515, Fall 2015 (V.Sarkar)9

Advanced Vectorization Algorithm  
(shown as distributed parallel loops)

DO I = 1, 100
S1 X(I) = Y(I) + 10
 DO J = 1, 100
S2 B(J) = A(J,N)

 DO K = 1, 100
S3 A(J+1,K)=B(J)
+C(J,K)

 ENDDO
S4 Y(I+J) = A(J+1, N)
 ENDDO
ENDDO

DO I = 1, 100
 DO J = 1, 100
S2: B(J) = A(J,N)
 DOALL K = 1, 100
S3: A(J+1,K)=B(J)+C(J,K)
 ENDDO
 ENDDO
 DOALL J = 1, 100

S4: Y(I+J) = A(J+1,N)

 END DO

ENDDO

DOALL I = 1, 100

S1: X(I) = Y(I) + 10

END DO

COMP 515, Fall 2015 (V.Sarkar)10

Enhancing Fine-Grained Parallelism

Chapter 5 of Allen and Kennedy

COMP 515, Fall 2015 (V.Sarkar)11

Fine-Grained Parallelism

Techniques to enhance fine-grained (vector) parallelism:
•  Loop Interchange
•  Scalar Expansion
•  Scalar Renaming
•  Array Renaming

COMP 515, Fall 2015 (V.Sarkar)12

Loop Shifting (Permutation)
•  Motivation: Identify loops which can be

moved and interchange them to “optimal”
nesting levels

•  Theorem 5.3 In a perfect loop nest, if loops
at level i, i+1,...,i+n carry no
dependence, it is always legal to shift these
loops inside of loop i+n+1. Furthermore,
these loops will not carry any dependences in
their new position.

COMP 515, Fall 2015 (V.Sarkar)13

Loop Shifting
 DO I = 1, N
 DO J = 1, N

 DO K = 1, N

S A(I,J) = A(I,J) + B(I,K)*C(K,J)

 ENDDO

 ENDDO

 ENDDO

•  S has true, anti and output dependences on itself, hence
codegen will fail as recurrence exists at innermost level

•  Use loop shifting to shift loops I and J inside loop K:
 DO K = 1, N

 DO I = 1, N

 DO J = 1, N

S A(I,J) = A(I,J) + B(I,K)*C(K,J)

 ENDDO

 ENDDO

 ENDDO

 I J K
(=, =, <)

COMP 515, Fall 2015 (V.Sarkar)14

Loop Shifting
 DO K= 1, N

 DO I = 1, N

 DO J = 1, N

S A(I,J) = A(I,J) + B(I,K)*C(K,J)

 ENDDO

 ENDDO

 ENDDO

codegen vectorizes to:
 DO K = 1, N

 A(1:N,1:N) = A(1:N,1:N) + SPREAD(B(1:N,K),2)*SPREAD(C(K,1:N),1)

 ENDDO

 K I J
(<, =, =)

COMP 515, Fall 2015 (V.Sarkar)15

•  Loop Shifting doesn’t always find the best loop to move. Consider:
 DO I = 1, N
 DO J = 1, M

S A(I+1,J+1) = A(I,J) + A(I+1,J)

 ENDDO

 ENDDO

•  Direction matrix: < <
 = <

•  Loop shifting algorithm will fail to uncover vector loops; however,
interchanging the loops can lead to:

 DO J = 1, M

 A(2:N+1,J+1) = A(1:N,J) + A(2:N+1,J)

 ENDDO

•  Need a more general algorithm

Loop Selection

< <

< =

COMP 515, Fall 2015 (V.Sarkar)16

Loop Selection
•  Loop selection:

— Select a loop at nesting level p ≥ k that can be safely moved
outward to level k and shift the loops at level k, k+1, …, p-1
inside it

K P P K

… … … …

COMP 515, Fall 2015 (V.Sarkar)17

Fully Permutable Loop Nest
•  A contiguous set of k ≥ 1 loops, ij,…,ij+k-1 is fully permutable if

all permutations of ij,…,ij+k-1are legal

•  Data dependence test: Loops ij,…,ij+k-1 are fully permutable if
for each dependence vector (d1,…,dn) carried at levels j … j
+k-1, each of dj,…,dj+k-1 is non-negative

•  Fundamental result (to be discussed later in course): a set of k
fully permutable loops can be transformed using only
Interchange, Reversal and Skewing transformations into an
equivalent set of k loops where k-1 of the loops are parallel

COMP 515, Fall 2015 (V.Sarkar)18

S1 T$(1:N) = A(1:N)

S2 A(1:N) = B(1:N)

S3 B(1:N) = T$(1:N)

 T = T$(N)

Scalar Expansion and its use in Removing Anti and
Output Dependences

 DO I = 1, N
S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T
 ENDDO

•  Scalar Expansion:
 DO I = 1, N
S1 T$(I) = A(I)
S2 A(I) = B(I)
S3 B(I) = T$(I)
 ENDDO
 T = T$(N)

•  leads to:

COMP 515, Fall 2015 (V.Sarkar)19

Scalar Expansion
•  However, scalar expansion (or any other form of storage

duplication) is not useful in removing true dependences.
Consider:

 DO I = 1, N
 T = T + A(I) + A(I+1)

 A(I) = T

 ENDDO

•  Scalar expansion gives us:
 T$(0) = T

 DO I = 1, N

S1 T$(I) = T$(I-1) + A(I) + A(I+1)

S2 A(I) = T$(I)

 ENDDO

 T = T$(N)

COMP 515, Fall 2015 (V.Sarkar)20

Scalar Expansion: Safety
•  Scalar expansion is always safe
•  When is it useful?

— Brute force approach: Expand all scalars, vectorize, shrink all
unnecessary expansions.

— However, we want to predict when expansion is useful i.e., when
scalar expansion can enable a dependence edge to be deleted

•  Dependences due to reuse of memory location vs. reuse of
values

— Dependences due to reuse of values must be preserved (true
dependences)

— Dependences due to reuse of memory location can be deleted by
expansion (anti & output dependences)
–  This is also why functional languages are easier to parallelize,

at the cost of increased memory overhead

COMP 515, Fall 2015 (V.Sarkar)21

Scalar Renaming
 DO I = 1, 100
S1 T = A(I) + B(I)

S2 C(I) = T + T

S3 T = D(I) - B(I)

S4 A(I+1) = T * T

 ENDDO

•  Renaming scalar T:
DO I = 1, 100

S1 T1 = A(I) + B(I)

S2 C(I) = T1 + T1

S3 T2 = D(I) - B(I)

S4 A(I+1) = T2 * T2

 ENDDO

COMP 515, Fall 2015 (V.Sarkar)22

Scalar Renaming
•  will lead to:
S3 T2$(1:100) = D(1:100) - B(1:100)

S4 A(2:101) = T2$(1:100) * T2$(1:100)

S1 T1$(1:100) = A(1:100) + B(1:100)

S2 C(1:100) = T1$(1:100) + T1$(1:100)

 T = T2$(100)

COMP 515, Fall 2015 (V.Sarkar)23

Homework #3 (Written Assignment)
1. Solve exercise 5.6 in book

— Your solution should be legal for all values of K (note that the value of K
is invariant in loop I)

Exercise 5.6: What vector code should be generated for the
following loop?
DO I = 1, 100
 A(I) = B(K) + C(I)
 B(I+1) = A(I) + D(I)
END DO

•  Due in class on Thursday, Oct 8th

