COMP 515: Advanced Compilation for Vector and Parallel Processors

Prof. Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515
Enhancing Fine-Grained Parallelism
(contd)

Chapter 5 of Allen and Kennedy
Scalar Expansion and its use in Removing Anti and Output Dependences (Recap)

DO I = 1, N
S_1 \quad T = A(I)
S_2 \quad A(I) = B(I)
S_3 \quad B(I) = T
ENDDO

• Scalar Expansion:

DO I = 1, N
S_1 \quad T$(I) = A(I)
S_2 \quad A(I) = B(I)
S_3 \quad B(I) = T$(I)
ENDDO
\quad T = T$(N)

• leads to:

S_1 \quad T$(1:N) = A(1:N)
S_2 \quad A(1:N) = B(1:N)
S_3 \quad B(1:N) = T$(1:N)
\quad T = T$(N)
Scalar Renaming (Recap)

DO I = 1, 100

S_1: T = A(I) + B(I)
S_2: C(I) = T + T
S_3: T = D(I) - B(I)
S_4: A(I+1) = T * T
ENDDO

• Renaming scalar T:

DO I = 1, 100

S_1: T_1 = A(I) + B(I)
S_2: C(I) = T_1 + T_1
S_3: T_2 = D(I) - B(I)
S_4: A(I+1) = T_2 * T_2
ENDDO
Scalar Renaming (Recap)

• will lead to:

\[
\begin{align*}
S_3 & \quad T_2(1:100) = D(1:100) - B(1:100) \\
S_4 & \quad A(2:101) = T_2(1:100) \times T_2(1:100) \\
S_1 & \quad T_1(1:100) = A(1:100) + B(1:100) \\
S_2 & \quad C(1:100) = T_1(1:100) + T_1(1:100) \\
T & \quad = T_2(100)
\end{align*}
\]
Scalar Renaming: Profitability

• Scalar renaming will break recurrences in which a loop-independent output dependence or anti-dependence is a critical element of a cycle

• Relatively cheap to use scalar renaming

• Usually done by compilers when calculating live ranges for register allocation
Array Renaming

DO I = 1, N
S_1 A(I) = A(I-1) + X
S_2 Y(I) = A(I) + Z
S_3 A(I) = B(I) + C
ENDDO

• \(S_1 \delta_{\infty} S_2 \) \(S_2 \delta_{\infty}^{-1} S_3 \) \(S_3 \delta_1 S_1 \) \(S_1 \delta_{\infty}^0 S_3 \)

• Rename A(I) to \(A'(I) \):
 DO I = 1, N
 S_1 A'(I) = A(I-1) + X
 S_2 Y(I) = A'(I) + Z
 S_3 A(I) = B(I) + C
 ENDDO

• Dependences remaining: \(S_1 \delta_{\infty} S_2 \) and \(S_3 \delta_1 S_1 \)
Array Renaming: Profitability

• Examining dependence graph and determining minimum set of critical edges to break a recurrence is NP-complete!

• Solution: determine edges that are removed by array renaming and analyze effects on dependence graph

procedure array_partition:

— Assumes no control flow in loop body
— Identifies collections of references to arrays which refer to the same value
— Identifies deletable output dependences and antidependences

• Use this procedure to generate code

— Minimize amount of copying back to the “original” array at the beginning and the end
Seen So Far...

- Uncovering potential vectorization in loops by
 - Loop Interchange
 - Scalar Expansion
 - Scalar and Array Renaming

- Safety and Profitability of these transformations
What’s next ...

• More transformations to expose more fine-grained parallelism
 — Node Splitting
 — Recognition of Reductions
 — Index-Set Splitting
 — Run-time Symbolic Resolution
 — Loop Skewing

Today’s lecture

• Unified framework to generate vector code

• Note: these transformations are useful for generating other forms of parallel and locality-optimized code as well (beyond vectorization)

Next lecture
Node Splitting

• Sometimes Renaming fails

\[
\begin{align*}
&\text{DO } I = 1, N \\
&S1: \quad A(I) = X(I+1) + X(I) \\
&S2: \quad X(I+1) = B(I) + 32 \\
&\text{ENDDO}
\end{align*}
\]

• Recurrence kept intact by renaming algorithm

\[
\begin{align*}
&\text{DO } I = 1, N \\
&S0: \quad X'(I) = X(I) \\
&S1: \quad A(I) = X(I+1) + X'(I) \\
&S2: \quad X'(I+1) = B(I) + 32 \\
&\text{ENDDO}
\end{align*}
\]

• \textbf{NOTE:} renaming $X(I)$ and $X(I+1)$ to $Z(I)$ and $Z(I+1)$ can help!
Node Splitting

DO I = 1, N
S1: A(I) = X(I+1) + X(I)
S2: X(I+1) = B(I) + 32
ENDDO

• Break critical antidependence
• Make copy of read from which antidependence emanates

DO I = 1, N
S1': X$ = X(I+1)
S1: A(I) = X$ + X(I)
S2: X(I+1) = B(I) + 32
ENDDO

• Recurrence broken
• Vectorized to
S1': X$(1:N) = X(2:N+1)
S2: X(2:N+1) = B(1:N) + 32
S1: A(1:N) = X$(1:N) + X(1:N)
Node Splitting Algorithm

- Takes a constant loop independent antidependence D
- Add new assignment $x: T$ = $source(D)$
- Insert x before $source(D)$
- Replace $source(D)$ with T
- Make changes in the dependence graph
Node Splitting: Profitability

- Not always profitable
- For example

  ```plaintext
  DO I = 1, N
  S1: A(I) = X(I+1) + X(I)
  S2: X(I+1) = A(I) + 32
  ENDDO
  ```

- Node Splitting gives

  ```plaintext
  DO I = 1, N
  S1': X$(I) = X(I+1)
  S1: A(I) = X$(I) + X(I)
  S2: X(I+1) = A(I) + 32
  ENDDO
  ```

- Recurrence still not broken
- Antidependence was not critical
Node Splitting

• Determining minimal set of critical antidependences is NP-hard
• Perfect job of Node Splitting difficult
• Heuristic:
 — Select antidependences
 — Delete it to see if acyclic
 — If acyclic, apply Node Splitting
Recognition of Reductions

• Sum Reduction, Min/Max Reduction, Count Reduction

• Vector ---> Single Element

\[
S = 0.0 \\
DO \ I = 1, N \\
\quad S = S + A(I) \\
ENDDO
\]

• Not directly vectorizable
Recognition of Reductions

- **Assuming commutativity and associativity**

 \[
 \begin{align*}
 S &= 0.0 \\
 &\text{DO } k = 1, 4 \\
 &\quad \text{SUM}(k) = 0.0 \\
 &\quad \text{DO } I = k, N, 4 \\
 &\quad \quad \text{SUM}(k) = \text{SUM}(k) + A(I) \\
 &\quad \text{ENDDO} \\
 S &= S + \text{SUM}(k) \\
 &\text{ENDDO}
 \end{align*}
 \]

- **Distribute k loop**

 \[
 \begin{align*}
 S &= 0.0 \\
 &\text{DO } k = 1, 4 \\
 &\quad \text{SUM}(k) = 0.0 \\
 &\text{ENDDO} \\
 &\text{DO } k = 1, 4 \\
 &\quad \text{DO } I = k, N, 4 \\
 &\quad \quad \text{SUM}(k) = \text{SUM}(k) + A(I) \\
 &\quad \text{ENDDO} \\
 S &= S + \text{SUM}(k) \\
 &\text{ENDDO}
 \end{align*}
 \]
Recognition of Reductions

• After Loop Interchange
 DO I = 1, N, 4
 DO k = I, min(I+3,N)
 SUM(k-I+1) = SUM(k-I+1) + A(I)
 ENDDO
 ENDDO

• Vectorize
 DO I = 1, N, 4
 SUM(1:4) = SUM(1:4) + A(I:I+3)
 ENDDO
Recognition of Reductions

• Useful for vector machines with 4 stage pipeline, and fine-grain SIMD parallelism on modern processors (MMX, Altivec)

• Recognize Reduction and Replace by the efficient version

Pipeline for Sum Reduction.
Recognition of Reductions

- Properties of Reductions
 - Reduce Vector/Array to one element
 - No use of Intermediate values
 - Reduction operates on vector and nothing else

- Reduction recognized by
 - Presence of self true, output and anti dependences
 - Absence of other true dependences
Index-set Splitting

• Subdivide loop into different iteration ranges to achieve partial parallelization
 — Threshold Analysis [Strong SIV, Weak Crossing SIV]
 — Loop Peeling [Weak Zero SIV]
 — Section Based Splitting [Variation of loop peeling]
Threshold Analysis

DO I = 1, 20
 A(I+20) = A(I) + B
ENDDO

Vectorize to

A(21:40) = A(1:20) + B

DO I = 1, 100
 A(I+20) = A(I) + B
ENDDO

Strip mine to

DO I = 1, 100, 20
 DO ii = I, I+19
 A(ii+20) = A(ii) + B
 ENDDO
ENDDO

Vectorize this
Threshold Analysis

- **Crossing thresholds**

  ```fortran
  DO I = 1, 100
    A(100-I) = A(I) + B
  ENDDO
  
  Strip mine to...
  DO I = 1, 100, 50
    DO ii = I, I+49
      A(101-ii) = A(ii) + B
    ENDDO
  ENDDO

  Vectorize to...
  DO I = 1, 100, 50
    A(101-I:51-I) = A(I:I+49) + B
  ENDDO
  ```
Loop Peeling

- Source of dependence is a single iteration

```plaintext
DO I = 1, N
    A(I) = A(I) + A(1)
ENDDO

Loop peeled to..
A(1) = A(1) + A(1)
DO I = 2, N
    A(I) = A(I) + A(1)
ENDDO

Vectorize to..
A(1) = A(1) + A(1)
A(2:N) = A(2:N) + A(1)
```
Section-based Splitting

\[
\begin{align*}
\text{DO } & \text{ I } = 1, N \\
& \text{ DO } J = 1, N/2 \\
S1: & \quad B(J,I) = A(J,I) + C \\
& \quad \text{ ENDDO} \\
& \text{ DO } J = 1, N \\
S2: & \quad A(J,I+1) = B(J,I) + D \\
& \quad \text{ ENDDO} \\
& \quad \text{ ENDDO}
\end{align*}
\]

- J Loop bound by recurrence due to B
- Only a portion of B is responsible for it

• Partition second loop into loop that uses result of S1 and loop that does not

\[
\begin{align*}
\text{DO } & \text{ I } = 1, N \\
& \text{ DO } J = 1, N/2 \\
S1: & \quad B(J,I) = A(J,I) + C \\
& \quad \text{ ENDDO} \\
& \text{ DO } J = 1, N/2 \\
S2: & \quad A(J,I+1) = B(J,I) + D \\
& \quad \text{ ENDDO} \\
& \text{ DO } J = N/2+1, N \\
S3: & \quad A(J,I+1) = B(J,I) + D \\
& \quad \text{ ENDDO} \\
& \quad \text{ ENDDO}
\end{align*}
\]
Section-based Splitting

\[
\begin{align*}
\text{DO } I & = 1, N \\
& \quad \text{DO } J = 1, N/2 \\
\text{S1: } & \quad B(J,I) = A(J,I) + C \\
& \quad \text{ENDDO} \\
& \quad \text{DO } J = 1, N/2 \\
\text{S2: } & \quad A(J,I+1) = B(J,I) + D \\
& \quad \text{ENDDO} \\
& \quad \text{DO } J = N/2+1, N \\
\text{S3: } & \quad A(J,I+1) = B(J,I) + D \\
& \quad \text{ENDDO} \\
& \quad \text{ENDDO}
\end{align*}
\]

- \text{S3 now independent of S1 and S2}

\[
\begin{align*}
\text{DO } I & = 1, N \\
& \quad \text{DO } J = N/2+1, N \\
\text{S3: } & \quad A(J,I+1) = B(J,I) + D \\
& \quad \text{ENDDO}
\end{align*}
\]
Section-based Splitting

• Vectorized to

\[A(N/2+1:N,2:N+1) = B(N/2+1:N,1:N) + D \]

DO I = 1, N
 DO J = 1, N/2
 S1: \[B(J,I) = A(J,I) + C \]
 ENDDO
 DO J = 1, N/2
 S2: \[A(J,I+1) = B(J,I) + D \]
 ENDDO
ENDDO

DO I = 1, N
 DO J = N/2+1, N
 S3: \[A(J,I+1) = B(J,I) + D \]
 ENDDO
ENDDO
1. Solve exercise 5.6 in book
 — Your solution should be legal for all values of K (note that the value of K
 is invariant in loop I)

Exercise 5.6: What vector code should be generated for the
following loop?
DO I = 1, 100
 A(I) = B(K) + C(I)
 B(I+1) = A(I) + D(I)
END DO

• Due in class on Thursday, Oct 8th