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Enhancing Fine-Grained Parallelism  
 

(contd)

Chapter 5 of Allen and Kennedy 
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S1      T$(1:N) = A(1:N) 

S2      A(1:N) = B(1:N) 

S3      B(1:N) = T$(1:N) 

        T = T$(N) 

Scalar Expansion and its use in Removing Anti and 
Output Dependences (Recap)

      
   DO I = 1, N 
S1     T = A(I) 
S2     A(I) = B(I) 
S3     B(I) = T 
    ENDDO 

•  Scalar Expansion: 
    DO I = 1, N 
S1     T$(I) = A(I) 
S2     A(I) = B(I) 
S3     B(I) = T$(I) 
    ENDDO 
    T = T$(N) 

•  leads to: 
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Scalar Renaming (Recap)
   DO I = 1, 100 
S1    T = A(I) + B(I) 

S2    C(I) = T + T 

S3    T = D(I) - B(I) 

S4    A(I+1) = T * T 

  ENDDO 

•  Renaming scalar T: 
DO I = 1, 100 

S1    T1 = A(I) + B(I) 

S2    C(I) = T1 + T1 

S3    T2 = D(I) - B(I) 

S4    A(I+1) = T2 * T2 

  ENDDO 
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Scalar Renaming (Recap)
•  will lead to: 
S3      T2$(1:100) = D(1:100) - B(1:100) 

S4      A(2:101) = T2$(1:100) * T2$(1:100) 

S1      T1$(1:100) = A(1:100) + B(1:100) 

S2      C(1:100) = T1$(1:100) + T1$(1:100) 

        T = T2$(100) 
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Scalar Renaming: Profitability
•  Scalar renaming will break recurrences in which a loop-

independent output dependence or anti-dependence is a critical 
element of a cycle 

•  Relatively cheap to use scalar renaming 
•  Usually done by compilers when calculating live ranges for 

register allocation 
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Array Renaming
 
  DO I = 1, N 

S1      A(I) = A(I-1) + X 

S2      Y(I) = A(I) + Z 

S3      A(I) = B(I) + C 

  ENDDO 

•  S1 δ∞ S2           S2 δ∞-1 S3            S3 δ1 S1           S1 δ∞0 S3 

•  Rename A(I) to A’(I):  
   DO I = 1, N 

S1      A’(I) = A(I-1) + X 

S2      Y(I) = A’(I) + Z 

S3      A(I) = B(I) + C 

   ENDDO  

•  Dependences remaining:   S1 δ∞ S2    and      S3 δ1 S1 
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Array Renaming: Profitability
•  Examining dependence graph and determining minimum set of 

critical edges to break a recurrence is NP-complete! 
•  Solution: determine edges that are removed by array renaming 

and analyze effects on dependence graph 
•  procedure array_partition: 

— Assumes no control flow in loop body 
— Identifies collections of references to arrays which refer to the 

same value  
— Identifies deletable output dependences and antidependences 

•  Use this procedure to generate code 
— Minimize amount of copying back to the “original” array at the 

beginning and the end 
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Seen So Far...
•  Uncovering potential vectorization in loops by 

— Loop Interchange 
— Scalar Expansion 
— Scalar and Array Renaming 

•  Safety and Profitability of these transformations 
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What’s next ...
•  More transformations to expose more fine-grained parallelism 

— Node Splitting 
— Recognition of Reductions 
— Index-Set Splitting 
— Run-time Symbolic Resolution 
— Loop Skewing  

•  Unified framework to generate vector code 
•  Note: these transformations are useful for generating other 

forms of parallel and locality-optimized code as well (beyond 
vectorization) 

Today’s lecture 

Next lecture 
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Node Splitting
•  Sometimes Renaming fails 

DO I = 1, N 

S1: A(I) = X(I+1) + X(I)

S2: X(I+1) = B(I) + 32

ENDDO

•  Recurrence kept intact by renaming algorithm 

DO I = 1, N 

  S0:       X’(I) = X(I)

S1: A(I) = X(I+1) + X’(I)

S2: X’(I+1) = B(I) + 32

ENDDO

•  NOTE: renaming X(I) and X(I+1) to Z(I) and Z(I+1) can help! 
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Node Splitting
DO I = 1, N 
S1:  A(I) = X(I+1) + X(I)

S2:  X(I+1) = B(I) + 32

ENDDO

•  Break critical antidependence 
•  Make copy of read from which 

antidependence emanates 

 
DO I = 1, N 
S1’: X$ = X(I+1)
S1: A(I) = X$ + X(I)
S2: X(I+1) = B(I) + 32
ENDDO

 

DO I = 1, N 

S1’: X$(I) = X(I+1)

S1: A(I) = X$(I) + X(I)

S2: X(I+1) = B(I) + 32

ENDDO

•  Recurrence broken 
•  Vectorized to 
S1’:  X$(1:N) = X(2:N+1)
S2:   X(2:N+1) = B(1:N) + 32
S1:   A(1:N) = X$(1:N) + X(1:N)
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Node Splitting Algorithm
•  Takes a constant loop independent antidependence D 

•  Add new assignment x: T$=source(D) 

•  Insert x before source(D) 

•  Replace source(D) with T$ 

•  Make changes in the dependence graph 
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Node Splitting: Profitability
•  Not always profitable 
•  For example 

DO I = 1, N 

S1: A(I) = X(I+1) + X(I)

S2: X(I+1) = A(I) + 32

ENDDO

•  Node Splitting gives 
DO I = 1, N 
S1’:X$(I) = X(I+1)

S1: A(I) = X$(I) + X(I)

S2: X(I+1) = A(I) + 32
ENDDO

•  Recurrence still not broken 
•  Antidependence was not 

critical 
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Node Splitting
•  Determining minimal set of critical antidependences is NP-hard 
•  Perfect job of Node Splitting difficult 
•  Heuristic: 

— Select antidependences 
— Delete it to see if acyclic 
— If acyclic, apply Node Splitting 
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Recognition of Reductions
•  Sum Reduction, Min/Max Reduction, Count Reduction 
•  Vector ---> Single Element 

S = 0.0

DO I = 1, N 

S = S + A(I)

ENDDO

•  Not directly vectorizable 



COMP 515, Fall 2015 (V.Sarkar)17 

Recognition of Reductions
•  Assuming commutativity and 

associativity 

S = 0.0

DO k = 1, 4

SUM(k) = 0.0

DO I = k, N, 4

SUM(k) = SUM(k) + A(I)

ENDDO

S = S + SUM(k)

ENDDO

•  Distribute k loop 
S = 0.0
DO k = 1, 4

SUM(k) = 0.0
ENDDO
DO k = 1, 4

DO I = k, N, 4
SUM(k) = SUM(k) + A(I)

ENDDO
ENDDO
DO k = 1, 4

S = S + SUM(k)
ENDDO
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Recognition of Reductions
•  After Loop Interchange 

DO I = 1, N, 4

DO k = I, min(I+3,N)

SUM(k-I+1) = SUM(k-I+1) + A(I)

ENDDO

ENDDO

•  Vectorize 
DO I = 1, N, 4

SUM(1:4) = SUM(1:4) + A(I:I+3)

ENDDO
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Recognition of Reductions
•  Useful for vector machines with 4 stage pipeline, and fine-grain 

SIMD parallelism on modern processors (MMX, Altivec) 
 

•  Recognize Reduction and Replace by the efficient version 
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Recognition of Reductions
•  Properties of Reductions 

— Reduce Vector/Array to one element 
— No use of Intermediate values 
— Reduction operates on vector and nothing else 

•  Reduction recognized by 
— Presence of self true, output and anti dependences 
— Absence of other true dependences 
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Index-set Splitting
•  Subdivide loop into different iteration ranges to achieve partial 

parallelization 
— Threshold Analysis [Strong SIV, Weak Crossing SIV] 

— Loop Peeling [Weak Zero SIV] 

— Section Based Splitting [Variation of loop peeling] 
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Threshold Analysis
DO I = 1, 20 

A(I+20) = A(I) + B

ENDDO

Vectorize to..

A(21:40) = A(1:20) + B

 
 
 
DO I = 1, 100 

A(I+20) = A(I) + B

ENDDO

Strip mine to..

DO I = 1, 100, 20

DO ii = I, I+19 

A(ii+20) = A(ii) + B

ENDDO

ENDDO

Vectorize this
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Threshold Analysis
•  Crossing thresholds 

DO I = 1, 100 

A(100-I) = A(I) + B

ENDDO

Strip mine to…

DO I = 1, 100, 50

DO ii = I, I+49 

A(101-ii) = A(ii) + B

ENDDO

ENDDO

Vectorize to…

DO I = 1, 100, 50 

A(101-I:51-I) = A(I:I+49) + B

ENDDO
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Loop Peeling
•  Source of dependence is a single iteration 

DO I = 1, N 

A(I) = A(I) + A(1)

ENDDO

Loop peeled to..

A(1) = A(1) + A(1)

DO I = 2, N 

A(I) = A(I) + A(1)

ENDDO

Vectorize to..

A(1) = A(1) + A(1)

A(2:N)= A(2:N) + A(1)
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Section-based Splitting

DO I = 1, N

DO J = 1, N/2 

S1:  B(J,I) = A(J,I) + C

ENDDO

DO J = 1, N 

S2:  A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

—  J Loop bound by recurrence 
due to B

—  Only a portion of B is 
responsible for it

•  Partition second loop into loop that 
uses result of S1 and loop that does 
not 

DO I = 1, N

DO J = 1, N/2 

S1: B(J,I) = A(J,I) + C

ENDDO
DO J = 1, N/2 

S2: A(J,I+1) = B(J,I) + D

ENDDO

DO J = N/2+1, N 

S3: A(J,I+1) = B(J,I) + D

ENDDO

ENDDO
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Section-based Splitting

DO I = 1, N

DO J = 1, N/2 

S1:  B(J,I) = A(J,I) + C

ENDDO

DO J = 1, N/2 

S2:  A(J,I+1) = B(J,I) + D

ENDDO

DO J = N/2+1, N 

S3:  A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

•  S3 now independent of S1 and S2 

•  Loop distribute to 
DO I = 1, N

DO J = N/2+1, N 
S3: A(J,I+1) = B(J,I) + D

ENDDO

ENDDO
DO I = 1, N

DO J = 1, N/2 

S1: B(J,I) = A(J,I) + C

ENDDO
DO J = 1, N/2 

S2: A(J,I+1) = B(J,I) + D

ENDDO

ENDDO
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Section-based Splitting
DO I = 1, N

DO J = N/2+1, N 

S3:  A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

DO I = 1, N

DO J = 1, N/2 

S1:  B(J,I) = A(J,I) + C

ENDDO

DO J = 1, N/2 

S2:  A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

•  Vectorized to 
A(N/2+1:N,2:N+1) = B(N/2+1:N,1:N) + D

DO I = 1, N
 B(1:N/2,I) = A(1:N/2,I) + C
 A(1:N/2,I+1) = B(1:N/2,I) + D
ENDDO
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Homework #3 (REMINDER)
1. Solve exercise 5.6 in book 

— Your solution should be legal for all values of K (note that the value of K 
is invariant in loop I) 

 

Exercise 5.6: What vector code should be generated for the 
following loop? 
DO I = 1, 100 
    A(I) = B(K) + C(I) 
    B(I+1) = A(I) + D(I) 
END DO 

 
•  Due in class on Thursday, Oct 8th 

 


