
COMP 515: Advanced Compilation
for Vector and Parallel Processors

Prof. Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu

https://wiki.rice.edu/confluence/display/PARPROG/COMP515

COMP 515 Lecture 9 24 September 2015

COMP 515, Fall 2015 (V.Sarkar)2

Enhancing Fine-Grained Parallelism  
 

(contd)

Chapter 5 of Allen and Kennedy

COMP 515, Fall 2015 (V.Sarkar)3

S1 T$(1:N) = A(1:N)

S2 A(1:N) = B(1:N)

S3 B(1:N) = T$(1:N)

 T = T$(N)

Scalar Expansion and its use in Removing Anti and
Output Dependences (Recap)

 DO I = 1, N
S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T
 ENDDO

•  Scalar Expansion:
 DO I = 1, N
S1 T$(I) = A(I)
S2 A(I) = B(I)
S3 B(I) = T$(I)
 ENDDO
 T = T$(N)

•  leads to:

COMP 515, Fall 2015 (V.Sarkar)4

Scalar Renaming (Recap)
 DO I = 1, 100
S1 T = A(I) + B(I)

S2 C(I) = T + T

S3 T = D(I) - B(I)

S4 A(I+1) = T * T

 ENDDO

•  Renaming scalar T:
DO I = 1, 100

S1 T1 = A(I) + B(I)

S2 C(I) = T1 + T1

S3 T2 = D(I) - B(I)

S4 A(I+1) = T2 * T2

 ENDDO

COMP 515, Fall 2015 (V.Sarkar)5

Scalar Renaming (Recap)
•  will lead to:
S3 T2$(1:100) = D(1:100) - B(1:100)

S4 A(2:101) = T2$(1:100) * T2$(1:100)

S1 T1$(1:100) = A(1:100) + B(1:100)

S2 C(1:100) = T1$(1:100) + T1$(1:100)

 T = T2$(100)

COMP 515, Fall 2015 (V.Sarkar)6 6

Scalar Renaming: Profitability
•  Scalar renaming will break recurrences in which a loop-

independent output dependence or anti-dependence is a critical
element of a cycle

•  Relatively cheap to use scalar renaming
•  Usually done by compilers when calculating live ranges for

register allocation

COMP 515, Fall 2015 (V.Sarkar)7

Array Renaming

 DO I = 1, N

S1 A(I) = A(I-1) + X

S2 Y(I) = A(I) + Z

S3 A(I) = B(I) + C

 ENDDO

•  S1 δ∞ S2 S2 δ∞-1 S3 S3 δ1 S1 S1 δ∞0 S3

•  Rename A(I) to A’(I):
 DO I = 1, N

S1 A’(I) = A(I-1) + X

S2 Y(I) = A’(I) + Z

S3 A(I) = B(I) + C

 ENDDO

•  Dependences remaining: S1 δ∞ S2 and S3 δ1 S1

COMP 515, Fall 2015 (V.Sarkar)8

Array Renaming: Profitability
•  Examining dependence graph and determining minimum set of

critical edges to break a recurrence is NP-complete!
•  Solution: determine edges that are removed by array renaming

and analyze effects on dependence graph
•  procedure array_partition:

— Assumes no control flow in loop body
— Identifies collections of references to arrays which refer to the

same value
— Identifies deletable output dependences and antidependences

•  Use this procedure to generate code
— Minimize amount of copying back to the “original” array at the

beginning and the end

COMP 515, Fall 2015 (V.Sarkar)9

Seen So Far...
•  Uncovering potential vectorization in loops by

— Loop Interchange
— Scalar Expansion
— Scalar and Array Renaming

•  Safety and Profitability of these transformations

COMP 515, Fall 2015 (V.Sarkar)10

What’s next ...
•  More transformations to expose more fine-grained parallelism

— Node Splitting
— Recognition of Reductions
— Index-Set Splitting
— Run-time Symbolic Resolution
— Loop Skewing

•  Unified framework to generate vector code
•  Note: these transformations are useful for generating other

forms of parallel and locality-optimized code as well (beyond
vectorization)

Today’s lecture

Next lecture

COMP 515, Fall 2015 (V.Sarkar)11

Node Splitting
•  Sometimes Renaming fails

DO I = 1, N

S1: A(I) = X(I+1) + X(I)

S2: X(I+1) = B(I) + 32

ENDDO

•  Recurrence kept intact by renaming algorithm

DO I = 1, N

 S0: X’(I) = X(I)

S1: A(I) = X(I+1) + X’(I)

S2: X’(I+1) = B(I) + 32

ENDDO

•  NOTE: renaming X(I) and X(I+1) to Z(I) and Z(I+1) can help!

COMP 515, Fall 2015 (V.Sarkar)12

Node Splitting
DO I = 1, N
S1: A(I) = X(I+1) + X(I)

S2: X(I+1) = B(I) + 32

ENDDO

•  Break critical antidependence
•  Make copy of read from which

antidependence emanates

DO I = 1, N
S1’: X$ = X(I+1)
S1: A(I) = X$ + X(I)
S2: X(I+1) = B(I) + 32
ENDDO

DO I = 1, N

S1’: X$(I) = X(I+1)

S1: A(I) = X$(I) + X(I)

S2: X(I+1) = B(I) + 32

ENDDO

•  Recurrence broken
•  Vectorized to
S1’: X$(1:N) = X(2:N+1)
S2: X(2:N+1) = B(1:N) + 32
S1: A(1:N) = X$(1:N) + X(1:N)

COMP 515, Fall 2015 (V.Sarkar)13

Node Splitting Algorithm
•  Takes a constant loop independent antidependence D

•  Add new assignment x: T$=source(D)

•  Insert x before source(D)

•  Replace source(D) with T$

•  Make changes in the dependence graph

COMP 515, Fall 2015 (V.Sarkar)14

Node Splitting: Profitability
•  Not always profitable
•  For example

DO I = 1, N

S1: A(I) = X(I+1) + X(I)

S2: X(I+1) = A(I) + 32

ENDDO

•  Node Splitting gives
DO I = 1, N
S1’:X$(I) = X(I+1)

S1: A(I) = X$(I) + X(I)

S2: X(I+1) = A(I) + 32
ENDDO

•  Recurrence still not broken
•  Antidependence was not

critical

COMP 515, Fall 2015 (V.Sarkar)15

Node Splitting
•  Determining minimal set of critical antidependences is NP-hard
•  Perfect job of Node Splitting difficult
•  Heuristic:

— Select antidependences
— Delete it to see if acyclic
— If acyclic, apply Node Splitting

COMP 515, Fall 2015 (V.Sarkar)16

Recognition of Reductions
•  Sum Reduction, Min/Max Reduction, Count Reduction
•  Vector ---> Single Element

S = 0.0

DO I = 1, N

S = S + A(I)

ENDDO

•  Not directly vectorizable

COMP 515, Fall 2015 (V.Sarkar)17

Recognition of Reductions
•  Assuming commutativity and

associativity

S = 0.0

DO k = 1, 4

SUM(k) = 0.0

DO I = k, N, 4

SUM(k) = SUM(k) + A(I)

ENDDO

S = S + SUM(k)

ENDDO

•  Distribute k loop
S = 0.0
DO k = 1, 4

SUM(k) = 0.0
ENDDO
DO k = 1, 4

DO I = k, N, 4
SUM(k) = SUM(k) + A(I)

ENDDO
ENDDO
DO k = 1, 4

S = S + SUM(k)
ENDDO

COMP 515, Fall 2015 (V.Sarkar)18

Recognition of Reductions
•  After Loop Interchange

DO I = 1, N, 4

DO k = I, min(I+3,N)

SUM(k-I+1) = SUM(k-I+1) + A(I)

ENDDO

ENDDO

•  Vectorize
DO I = 1, N, 4

SUM(1:4) = SUM(1:4) + A(I:I+3)

ENDDO

COMP 515, Fall 2015 (V.Sarkar)19

Recognition of Reductions
•  Useful for vector machines with 4 stage pipeline, and fine-grain

SIMD parallelism on modern processors (MMX, Altivec)

•  Recognize Reduction and Replace by the efficient version

COMP 515, Fall 2015 (V.Sarkar)20

Recognition of Reductions
•  Properties of Reductions

— Reduce Vector/Array to one element
— No use of Intermediate values
— Reduction operates on vector and nothing else

•  Reduction recognized by
— Presence of self true, output and anti dependences
— Absence of other true dependences

COMP 515, Fall 2015 (V.Sarkar)21

Index-set Splitting
•  Subdivide loop into different iteration ranges to achieve partial

parallelization
— Threshold Analysis [Strong SIV, Weak Crossing SIV]

— Loop Peeling [Weak Zero SIV]

— Section Based Splitting [Variation of loop peeling]

COMP 515, Fall 2015 (V.Sarkar)22

Threshold Analysis
DO I = 1, 20

A(I+20) = A(I) + B

ENDDO

Vectorize to..

A(21:40) = A(1:20) + B

DO I = 1, 100

A(I+20) = A(I) + B

ENDDO

Strip mine to..

DO I = 1, 100, 20

DO ii = I, I+19

A(ii+20) = A(ii) + B

ENDDO

ENDDO

Vectorize this

COMP 515, Fall 2015 (V.Sarkar)23

Threshold Analysis
•  Crossing thresholds

DO I = 1, 100

A(100-I) = A(I) + B

ENDDO

Strip mine to…

DO I = 1, 100, 50

DO ii = I, I+49

A(101-ii) = A(ii) + B

ENDDO

ENDDO

Vectorize to…

DO I = 1, 100, 50

A(101-I:51-I) = A(I:I+49) + B

ENDDO

COMP 515, Fall 2015 (V.Sarkar)24

Loop Peeling
•  Source of dependence is a single iteration

DO I = 1, N

A(I) = A(I) + A(1)

ENDDO

Loop peeled to..

A(1) = A(1) + A(1)

DO I = 2, N

A(I) = A(I) + A(1)

ENDDO

Vectorize to..

A(1) = A(1) + A(1)

A(2:N)= A(2:N) + A(1)

COMP 515, Fall 2015 (V.Sarkar)25

Section-based Splitting

DO I = 1, N

DO J = 1, N/2

S1: B(J,I) = A(J,I) + C

ENDDO

DO J = 1, N

S2: A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

—  J Loop bound by recurrence
due to B

—  Only a portion of B is
responsible for it

•  Partition second loop into loop that
uses result of S1 and loop that does
not

DO I = 1, N

DO J = 1, N/2

S1: B(J,I) = A(J,I) + C

ENDDO
DO J = 1, N/2

S2: A(J,I+1) = B(J,I) + D

ENDDO

DO J = N/2+1, N

S3: A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

COMP 515, Fall 2015 (V.Sarkar)26

Section-based Splitting

DO I = 1, N

DO J = 1, N/2

S1: B(J,I) = A(J,I) + C

ENDDO

DO J = 1, N/2

S2: A(J,I+1) = B(J,I) + D

ENDDO

DO J = N/2+1, N

S3: A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

•  S3 now independent of S1 and S2

•  Loop distribute to
DO I = 1, N

DO J = N/2+1, N
S3: A(J,I+1) = B(J,I) + D

ENDDO

ENDDO
DO I = 1, N

DO J = 1, N/2

S1: B(J,I) = A(J,I) + C

ENDDO
DO J = 1, N/2

S2: A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

COMP 515, Fall 2015 (V.Sarkar)27

Section-based Splitting
DO I = 1, N

DO J = N/2+1, N

S3: A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

DO I = 1, N

DO J = 1, N/2

S1: B(J,I) = A(J,I) + C

ENDDO

DO J = 1, N/2

S2: A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

•  Vectorized to
A(N/2+1:N,2:N+1) = B(N/2+1:N,1:N) + D

DO I = 1, N
 B(1:N/2,I) = A(1:N/2,I) + C
 A(1:N/2,I+1) = B(1:N/2,I) + D
ENDDO

COMP 515, Fall 2015 (V.Sarkar)28

Homework #3 (REMINDER)
1. Solve exercise 5.6 in book

— Your solution should be legal for all values of K (note that the value of K
is invariant in loop I)

Exercise 5.6: What vector code should be generated for the
following loop?
DO I = 1, 100
 A(I) = B(K) + C(I)
 B(I+1) = A(I) + D(I)
END DO

•  Due in class on Thursday, Oct 8th

