COMP 515: Advanced Compilation for Vector and Parallel Processors

Prof. Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu
https://wiki.rice.edu/confluence/display/PARPROG/COMP515

Enhancing Fine-Grained Parallelism

(contd)

Chapter 5 of Allen and Kennedy

Scalar Expansion and its use in Removing Anti and Output Dependences (Recap)

- Scalar Expansion:

S_{1}	$T \$(I)=A(I)$
S_{2}	$A(I)>B(I)$
S_{3}	$B(I)=T \$(I)$
	ENDDO
	$\mathrm{T}=\mathrm{T}$ (N$)$

- leads to:

$$
\begin{array}{ll}
S_{1} & T \$(1: N)=A(1: N) \\
S_{2} & A(1: N)=B(1: N) \\
S_{3} & B(1: N)=T \$(1: N) \\
& T=T \$(N)
\end{array}
$$

Scalar Renaming (Recap)

- Renaming scalar T:

Scalar Renaming (Recap)

- will lead to:

S_{3}	$\mathrm{~T} 2 \$(1: 100)=\mathrm{D}(1: 100)-\mathrm{B}(1: 100)$
S_{4}	$\mathrm{~A}(2: 101)=\mathrm{T} 2 \$(1: 100) * \mathrm{~T} 2 \$(1: 100)$
S_{1}	$\mathrm{~T} 1 \$(1: 100)=\mathrm{A}(1: 100)+\mathrm{B}(1: 100)$
S_{2}	$\mathrm{C}(1: 100)=\mathrm{T} 1 \$(1: 100)+\mathrm{T} 1 \$(1: 100)$
	$\mathrm{T}=\mathrm{T} 2 \(100)

Scalar Renaming: Profitability

- Scalar renaming will break recurrences in which a loopindependent output dependence or anti-dependence is a critical element of a cycle
- Relatively cheap to use scalar renaming
- Usually done by compilers when calculating live ranges for register allocation

Array Renaming

- Rename $A(I)$ to $A^{\prime}(I):$

- Dependences remaining: $S_{1} \delta_{\infty} S_{2}$ and $S_{3} \delta_{1} S_{1}$

Array Renaming: Profitability

- Examining dependence graph and determining minimum set of critical edges to break a recurrence is NP-complete!
- Solution: determine edges that are removed by array renaming and analyze effects on dependence graph
- procedure array_partition:
- Assumes no control flow in loop body
-Identifies collections of references to arrays which refer to the same value
- Identifies deletable output dependences and antidependences
- Use this procedure to generate code
- Minimize amount of copying back to the "original" array at the beginning and the end

Seen So Far...

- Uncovering potential vectorization in loops by
- Loop Interchange
- Scalar Expansion
- Scalar and Array Renaming
- Safety and Profitability of these transformations

What's next ...

- More transformations to expose more fine-grained parallelism
- Node Splitting
- Recognition of Reductions
- Index-Set Splitting

Today's lecture

J Next lecture

- Unified framework to generate vector code
- Note: these transformations are useful for generating other forms of parallel and locality-optimized code as well (beyond vectorization)

Node Splitting

- Sometimes Renaming fails

```
DO I = 1,N
    S1: A(I) = X(I+1) + X(I)
    S2: }\quadX(I+1)=B(I)+3
ENDDO
```

- Recurrence kept intact by renaming algorithm

```
DO \(I=1, N\)
    SO: \(\quad X^{\prime}(I)=X(I)\)
    S1: \(\quad A(I)=X(I+1)+X^{\prime}(I)\)
    S2: \(\quad X^{\prime}(I+1)=B(I)+32\)
ENDDO
```

- NOTE: renaming $X(I)$ and $X(I+1)$ to $Z(I)$ and $Z(I+1)$ can help!

Node Splitting

- Break critical antidependence
- Make copy of read from which antidependence emanates

```
DO I = 1, N
S1': X$ = X(I+1)
S1: A(I) = X$ + X(I)
S2: X(I+1) = B(I) + 32
ENDDO
```


- Recurrence broken
- Vectorized to

S1': $\mathrm{X} \$(1: N)=\mathrm{X}(2: N+1)$
S2: $\quad X(2: N+1)=B(1: N)+32$
S1: A(1:N) $=X(1: N)+X(1: N)$

Node Splitting Algorithm

- Takes a constant loop independent antidependence D
- Add new assignment x : T\$=source(D)
- Insert x before source(D)
- Replace source(D) with T\$
- Make changes in the dependence graph

Node Splitting: Profitability

- Not always profitable
- For example

ENDDO

- Node Splitting gives

DO $I=1, N$
S1': X\$(I) = $X(I+1)$
$\begin{array}{ll}\text { S1: } & A(I)=X(I)+X(I) \\ \text { S2: } & X(I+1)=A(I)+32\end{array}$
ENDDO

- Recurrence still not broken
- Antidependence was not critical

Node Splitting

- Determining minimal set of critical antidependences is NP-hard
- Perfect job of Node Splitting difficult
- Heuristic:
-Select antidependences
- Delete it to see if acyclic
-If acyclic, apply Node Splitting

Recognition of Reductions

- Sum Reduction, Min/Max Reduction, Count Reduction
- Vector ---> Single Element

$$
\begin{aligned}
& S=0.0 \\
& \text { DO } I=1, N \\
& \quad S=S+A(I)
\end{aligned}
$$

ENDDO

- Not directly vectorizable

Recognition of Reductions

- Assuming commutativity and associativity

```
\(S=0.0\)
DO \(k=1,4\)
    \(\operatorname{SUM}(k)=0.0\)
    DO \(\mathrm{I}=\mathrm{k}, \mathrm{N}, 4\)
        \(\operatorname{SUM}(k)=\operatorname{SUM}(k)+A(I)\)
    ENDDO
    \(\mathbf{S}=\mathbf{S}+\mathbf{S U M}(\mathbf{k})\)
    ENDDO
```

- Distribute k loop

```
S = 0.0
```

DO $k=1,4$
$\operatorname{SUM}(k)=0.0$
ENDDO
DO $k=1$, 4
DO $\mathrm{I}=\mathrm{k}, \mathrm{N}, 4$
$\operatorname{SUM}(k)=\operatorname{SUM}(k)+A(I)$
ENDDO
ENDDO
DO $k=1,4$
$\mathbf{S}=\mathbf{S}+\operatorname{SUM}(k)$
ENDDO

Recognition of Reductions

- After Loop Interchange

DO $I=1, N, 4$
DO $k=I, \min (I+3, N)$
$\operatorname{SUM}(k-I+1)=\operatorname{SUM}(k-I+1)+A(I)$
ENDDO
ENDDO

- Vectorize

```
DO I = 1, N, 4
        SUM(1:4) = SUM(1:4) + A(I:I+3)
    ENDDO
```


Recognition of Reductions

- Useful for vector machines with 4 stage pipeline, and fine-grain SIMD parallelism on modern processors (MMX, Altivec)
- Recognize Reduction and Replace by the efficient version

Pipeline for Sum Reduction.

Recognition of Reductions

- Properties of Reductions
- Reduce Vector/Array to one element
- No use of Intermediate values
- Reduction operates on vector and nothing else
- Reduction recognized by
-Presence of self true, output and anti dependences
- Absence of other true dependences

Index-set Splitting

- Subdivide loop into different iteration ranges to achieve partial parallelization
- Threshold Analysis [Strong SIV, Weak Crossing SIV]
- Loop Peeling [Weak Zero SIV]
-Section Based Splitting [Variation of loop peeling]

Threshold Analysis

```
DO I = 1, 20
    A(I+20)=A(I) + B
ENDDO
Vectorize to..
A(21:40) = A(1:20) + B
```

```
DO I = 1, 100
```

 \(A(I+20)=A(I)+B\)
 ENDDO
Strip mine to..
DO $I=1,100,20$
DO $\mathrm{ii}=\mathrm{I}, \mathrm{I}+19$
$A(i i+20)=A(i i)+B$
ENDDO
ENDDO

Threshold Analysis

- Crossing thresholds

```
DO I = 1, 100
    A(100-I) = A(I) + B
ENDDO
Strip mine to...
DO I = 1, 100, 50
        DO ii = I, I+49
            A(101-ii) = A(ii) + B
        ENDDO
    ENDDO
Vectorize to...
DO I = 1, 100, 50
    A(101-I:51-I) = A(I:I+49) + B
    ENDDO
```


Loop Peeling

- Source of dependence is a single iteration

```
DO I = 1, N
    A(I) = A(I) + A(1)
```

 ENDDO
 Loop peeled to..
$\mathrm{A}(1)=\mathrm{A}(1)+\mathrm{A}(1)$
DO $I=2, N$
$A(I)=A(I)+A(1)$
ENDDO
Vectorize to..
$\mathrm{A}(1)=\mathrm{A}(1)+\mathrm{A}(1)$
$A(2: N)=A(2: N)+A(1)$

Section-based Splitting

```
DO I = 1, N
    DO J = 1, N/2
S1: B(J,I)=A(J,I) + C
    ENDDO
    DO J = 1, N
S2:A(J,I+1)=B(J,I) + D
    ENDDO
ENDDO
- J Loop bound by recurrence
    due to B
- Only a portion of B is
    responsible for it
```

- Partition second loop into loop that uses result of S 1 and loop that does not
DO $\mathrm{I}=1$, N
DO $\mathrm{J}=1$, $\mathrm{N} / 2$
S1: $\mathbf{B (J , I)}=A(J, I)+C$
EndDo
DO $\mathrm{J}=1, \mathrm{~N} / 2$
S2: A(J,I+1) = B(J,I) + D ENDDO
DO $\mathrm{J}=\mathrm{N} / 2+1$, N
S3: $A(J, I+1)=B(J, I)+D$
EndDo
ENDDO

Section-based Splitting

DO $I=1, N$
DO $J=1, N / 2$
S1: $\quad B(J, I)=A(J, I)+C$
ENDDO
DO $J=1, N / 2$
S2: $A(J, I+1)=B(J, I)+D$
ENDDO
DO $\mathrm{J}=\mathrm{N} / 2+1, \mathrm{~N}$
S3: $A(J, I+1)=B(J, I)+D$ ENDDO

ENDDO

- S3 now independent of S1 and S2
- Loop distribute to DO $\mathbf{I}=1, N$

DO $J=N / 2+1, N$
S3: A $(J, I+1)=B(J, I)+D$ ENDDO

ENDDO
DO $\mathrm{I}=1, \mathrm{~N}$
DO $J=1, N / 2$
S1: $B(J, I)=A(J, I)+C$ ENDDO

DO $J=1, N / 2$
S2: A $(J, I+1)=B(J, I)+D$ ENDDO

ENDDO

Section-based Splitting

```
DO I = 1, N
    DO J = N/2+1, N
S3:A(J,I+1)=B(J,I) + D
    ENDDO
ENDDO
```

```
DO I = 1,N
    DO J = 1, N/2
S1: B(J,I)=A(J,I) + C
    ENDDO
    DO J = 1, N/2
S2:A(J,I+1)=B(J,I) + D
    ENDDO
ENDDO
```

- Vectorized to
$A(N / 2+1: N, 2: N+1)=B(N / 2+1: N, 1: N)+D$
DO $I=1, N$
$B(1: N / 2, I)=A(1: N / 2, I)+C$
$A(1: N / 2, I+1)=B(1: N / 2, I)+D$
ENDDO

Homework \#3 (REMINDER)

1. Solve exercise 5.6 in book

- Your solution should be legal for all values of K (note that the value of K is invariant in loop I)

Exercise 5.6: What vector code should be generated for the following loop?
$D O I=1,100$
$A(I)=B(K)+C(I)$
$B(I+1)=A(I)+D(I)$
END DO

- Due in class on Thursday, Oct $8^{\text {th }}$

