
Comp 311
Functional Programming

Lecture 1
Robert “Corky” Cartwright

Rice University

Robert “Corky” Cartwright
• PhD Stanford 1976[1977]

• Official Advisor: David Luckham
• Primary Mentor: John McCarthy

• Research Background
• PL theory

• First-order Programming Logic
• Semantics of types, sequential functional languages
• Type systems (Soft typing)

• PL systems (software engineering)
• Soft type checker for functional languages like Scheme
• Testing concurrent programs
• DrJava including Functional Java Subset

2

Course Overview I
• An Introduction to Functional Programming

• Lectures: TuTh, 9:25am – 10:40am, DH 1064

• Office hours: Corky

• Duncan Hall 3104

• Tuesdays and Thursdays 1:30pm – 2:30pm

• By appointment

3

Course Mechanics
• Course website: are https://github.com/JavaPLT/Comp-311-Fall-2023 Former

course websites: https://comp311.rice.edu

• Syllabus and past lectures posted there
• Lecture topics are subject to some change, particularly in last

third of the class.
• Piazza: https://piazza.com/rice/fall2021/comp311

• Course announcements and Q&A forum
• Homework assignments and practice exams posted here

• Grading
• 50% Homework Assignments
• 25% Mid-term
• 25% Final
• Extra credit points on exams, some assignments
• Late assignment not accepted except for 7 24-hour slip day

extensions at your option. Save them for the harder
assignments later in the course.

4

https://github.com/JavaPLT/Comp-311-Fall-2023
https://comp311.rice.edu/
https://piazza.com/rice/fall2021/comp311

Course Overview II
• No textbook purchase required

• We will draw from a variety of sources including free
online textbooks, monographs, and published papers.
Some of them are available for purchase in printed
form from online bookstores if you choose.

• Coursework consists primarily of weekly homework
assignments that are either short programming
assignments or written assignments about the
underlying theory.

• Make sure you do these assignments! They embody
the key ideas and principles covered in the course.

5

Course Culture
• Basic course on functional programming

• With the possible exception of the material on Haskell at the end of
the course, the content should be accessible to freshmen with little
background in Computer Science who know the rudiments of Java,
e.g., have taken an AP Computer Science course that covers Java
programing.

• Coursework consists primarily of weekly homework assignments that
are either short programming assignments or written assignments

about the underlying theory.

• Make sure you do these assignments! They embody the key ideas and
principles covered in the course.

• Why functional programming matters (expounded on next slide)

6

Two basic models of computation

• Mutate state. Example: simulating a
machine language program for a commodity
x86 processor. Too messy to illustrate.

• Simplify symbolic expressions,
typically using leftmost reductions.
Example: reducing an arithmetic expression to a
value, e.g.,

(17 + 5) – 3 = 22 – 3 = 19

Read: whyfp.pdf (chalmers.se)
[https://www.cse.chalmers.se/~rjmh/Papers/whyfp.pdf]

7

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.pdf

Mutating State
• In this model, a computation is a sequence of machine states that begins

with a start state and generates a potentially infinite sequence of steps
where each step is a new state completely determined by the preceding
state.
• The state includes both the program and the data being processed by the

program.
• The state space is infinite if the model is Turing-complete (capable of

implementing any computable function).
• The simplest such model is Turing machines, but modern so-called Random

Access Machines (RAMs) such as x86 processors that are ubiquitous (billions
of microprocessors!) embody the same basic model, except that they impose
limits on size and number of allowed states. Of course this limit increases if
you add more memory (including auxiliary storage) to the machine.

• Each step in a computation updates the state of a machine.
• A primary advantage of this model is that it makes the costs of computations

manifest by counting state-change steps (or equivalently the number of
states appearing in a computation that terminates).

• A disadvantage is that even trivial computation are messy and full of tedious
details. Examples are very time-consuming to present so I won’t.

8

Simplifying Expressions

In this model (sometimes called the reduction model, a computation
is a potentially infinite sequence of “reduction steps” that that
transform a starting expression to an irreducible expression that is
called the “answer”. Each reduction step simply replaces a sub-
expression of an expression by an equivalent expression that is
closer to being an answer.
• Simplification replaces a program by a “simpler” program.
• This computational model is actually very familiar to most students because we all

learn how to do arithmetic in grammar school. Evaluating the arithmetic
expression

(17 + 5) – 3 = 22 – 3 = 19
is a very simple computation in this model.

• In the simplest version of this model, every expression is a tree constructed from a
countable collection of primitive operations of fixed arity (including constants).

• The linear expression
(17 + 5) – 3

is really a tree with the – operation at the root. In linear symbolic notation, we
typically encode the structure of the tree using parentheses.

9

Multitude of different syntactic definitions of expressions
• You are undoubtedly aquainted with some of these definitions as in Python,

Pascal, Java, C, C++, Scala, Swift, Rust, Cotlin, Haskell, JavaScript, Perl, Snobol,
APL, COBOL, Fortran, Modula, Cedar, … , Racket/Scheme. If we ignore tedious
differences in syntactic conventions and outright pathologies (e.g., APL) , there
typically are only a few important differences:
• Are variables allowed and can they be bound inside expressions? (Necessary for Turing

completeness?)
• Can compound expressions appear as operators? (Often stated: are functions “first-class”

data values) The answer regrettably is “No” in most mainstream languages (e.g. Pascal,
Java, C, C++, JavaScript, …). Even first-order logic bans such constructions. (Unnecessary
for Turing completeness; explicit apply operator is a common hack.)

• Many languages that do not explicitly support “functions as first class values” have tolerable
workarounds like anonymous inner classes in Java (now abbreviated by “lambda
expressions” [Church is turning in his grave]).

The intuitive key to mastering the “reduction” model of computation is to think
of expressions as trees, often called abstract syntax trees (ASTs). In such a tree
every operator is the root of a subtree where its operands (arguments),
represented as ASTs, are its children. Hence, (17 + 5) is represented by the AST

10

+

17 5

Homework Assignments

Think of the programming assignments in this class as
very short essays. Focus as much on style as you would
for an essay.

50% of a homework grade is based on clarity and style

50% on correctness

11

Homework Assignments
• Projects are generally due one week after being assigned.

• Each student has 7 “slip days” to address scheduling conflicts
and minor sickness. No more than 3 “slip days” can be used on
a given assignment unless you get explicit permission from the
instructor.

• Hoard your slip days. The assignments will be progressively
more challenging. I predict that some students will not use any
slip days.

• Expect to spend about 10 hours outside of class per week.

• Block this time off now in your schedule and respect these
commitments.

12

Homework Assignments
• Assignments are published on Monday or

Wednesday evening and due exactly one
week (11:59 pm) later.

• Start on assignments early so that you have
time to ask questions in class, on Piazza, and
at office hours.

• A positive attitude and tackling assignments
early will help you do your best in the
course.

13

Homework Assignments
• All assignments will be small in scale.
• Most will be given in (the functional subset of) Racket which is

a very simple, pure functional language that is easy to simulate
in most modern type-safe languages. We will document
Racket programs with types, which are mandated in the
program text of statically typed functional languages like
Ocaml and Haskell.

• We will subsequently show how to cleanly express functional
programs in Java consistent with good OO design, exposing
most of the technology used to implement OO languages like
Scala that explicitly support functional programming.

• We will show how to systematically reason about imperative
code using Hoare logic; this reasoning typically relies on
functional specifications. Programming is really mathematics.

14

Homework Assignments
• We mandate that you use the DrRacket programming

environment to develop and test Racket programs. Racket is a
dialect of the Scheme programming language This
standardization of Scheme dialect matters because we will test
your code using Racket. The Racket platform runs on Windows,
MacOSX, and Linux. If you have a Chromebook, we suggest
that you run Linux on it, which requires using “developer mode”.

• For Java, you have the option of using DrJava or a professional
IDE like IntelliJ IDEA or Eclipse. Choose what makes you
comfortable. I only use DrJava so I won’t be able to answer
questions about the professional IDEs.

• We will use GitHub Classroom as the distribution mechanism
and the repository for all assignments.

• Instructions on how to format and submit assignments will be
posted as part of the assignment instructions.

15

What is Functional
Programming?

16

Background: Early Models of Computation

• Turing Machines (Turing)
• Type-0 Grammars (Chomsky)
• The Lambda Calculus (Church)
• Post Machines (Post)

The creators of these models were surprised when they all turned out to be
equivalent if computations are confined to functions mapping finite inputs
to finite outputs. The notion of computability is an utterly fundamental
notion in mathematics and predates all electronic computers

With exception of Lambda Calculus, all of these models are “bottom-up”
frameworks for pushing bits or symbols. But even the Lambda Calculus
had a grubby syntactic character because there was no underlying model
based on defining and applying functions. The functional character of the
Lambda Calculus was only an intuitive vision until Scott supplied a truly
functional model that could handle self-application and support an
isomorphism between the domain D of values represented by lambda
expressions and the domain D → D of functional over D.

17

The Lambda Calculus
• A calculus consists of a set of rules for rewriting symbols.
• The Lambda Calculus was an attempt to rebuild all of mathematics on

the notion of functions and applications.
• There is no mutation in the lambda calculus; it is a reduction system

like rational arithmetic.
• Every program consists solely of applications of functions to arguments

(which are also functions in the pure lambda calculus, a misleading
restriction IMO)

• Applications of functions return values (which are also functions)
• Encoding numbers as functions does not work out well; in the pure

lambda calculus, numbers are actually encoded as syntactic descriptions
of functions. The equality of functions is undecidable.

• The Pure Lambda Calculus was a critical step in the right direction but
it was NOT a true functional programming language. If you add a few
constants (natural numbers, the suc and if-zero (conditional expressions)
functions), you get PCF which is a true universal functional
programming language. But even PCF is incomplete in fundamental (if
practically unimportant) ways. Scheme/Racket is an analog of PCF that
supports more interesting forms of ground (non-functional) data values
than just the natural numbers. 18

What is Functional Programming?

Every program is a collection of function definitions plus
an execution expression. For example, assuming our
programming language includes the natural numbers,
booleans, and a few simple primitive operations on
natural numbers and boolean, we can define a program
for computing factorial is as follows:

fact(0) = 1
fact(n +1) = n  fact(n – 1)

and compute fact(1000) using equational reasoning which
can be systematized as a reduction system. The result is
obviously a large number but you can trivially do this
calculation in Racket.

19

Why Avoid Side Effects?
• Programs are easier to write: There are fewer interactions between

program components, enabling multiple programmers (or a single
programmer on multiple days) to work together more easily. Moreover,
essentially all data types have simple inductive definitions which provide
a simple framework (recursive definitions of functions) for writing code.

• Programs are easier to read: Pieces of a program can be read and
understood in isolation.

• Programs are easier to test: Less context needs to be built up before
calling a function to test it.

• Programs are easier to debug: Problems can be isolated more easily,
and behavior is inherently deterministic and local.

• Programs are easier to reason about: The model of computation
needed to understand a program without mutation is much simpler; it is
ordinary algebra plus induction on the structure of the data.

20

Why Avoid Side Effects?
• Programs are easier to execute in parallel: Because

separate pieces of a computation do not interact, it is
easy to compute them on separate processors

• This is an increasingly important consideration in the
era of multicore chips, big data, and distributing
computing

• This advantage undermines an often cited efficiency
argument for using imperative programming (mutation of
variables and data structures) instead of functional
programming. Imperative hacks often introduce more
synchronization and data-representation sharing.

21

General Functional Programming Languages

We already defined the functional model of
computation but modern functional languages share
two important properties

• The ground (non-functional) domain of data values
includes all common primitive types: numbers of
various forms, characters, strings, lists, and optional
algebraic forms of data that are constructed using
program-declared contructors. Functions may
typically appear in such constructions.

• Functions may be dynamically created during
computation and returned as values of applications.

22

Why Emphasize Functions?
• Functions allow us to factor out common code

• DRY: Don’t Repeat Yourself

• Why is DRY important?

• Program understanding

• Program maintenance

• Passing functions as arguments is often the most
straightforward way to abide by DRY

• Returning functions as values is also important for DRY
23

Why Emphasize Functions?

• Functions allow us to concisely package computations
and move them from one control point to another

• The functional model simplifies implementing and
reasoning about parallel and distributed programming
(yet again)

• Even reasoning about sequential programs is easie.

• Equational reasoning + induction is sufficient for proving
almost any property of a functional program

24

A Word on Object-Oriented
Programming

• There is no tension between functional and object-
oriented programming. In fact, OOP can be cast as an
enrichment of FP. See

https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

• In many ways, they complement one another.

• Languages like Scala, Swift, Kotlin and even Rust are
designed to integrate both styles of programming

25

https://www.cs.rice.edu/~javaplt/papers/OOPEnrichesFP.pdf

Quick Start with Racket

To install Racket on Windows, MacOsX, or Linux,

• Go to https://racket-lang.org/download/ and download
the “regular” version of Racket.

• Execute the downloaded installation file.

• Play with Racket arithmetic and simple functions on
numbers. Racket performs rational arithmetic until
forced to use inexact approximations.

26

https://racket-lang.org/download/

Generalized Expressions
• Most mainstream languages support a very restricted set of expressions built from

operators (which are typically not values that can be used as arguments) and
constants because this restriction facilitates simple notation and simple
implementation. Most functional programming languages support a much more
general expression language where there is little or no distinction between
functions and other ground (non-function) values nor between built-in operators
like + and program-defined functions.

• In this realm of generalized expressions, we need to use a more explicit syntax (or
adopt some slick syntactic conventions as in Ocaml and Haskell) to support the use
of operators as function constants. Infix operators are particularly problematic, so
the Lisp family of languages (which includes Racket) does not support infix
notation. Instead of infix operators there are corresponding primitive functions.
This convention is also common in mathematical logic, where 2+2 is usually written
+(2,2). In such frameworks, there can be 0-ary operators where the application of 0-
ary operator must be distinguished from the value itself (which is a function of 0
arguments). A putative example is an operator ! designating a function that aborts
a computation and returns a special failure value. Passing such an operator as a
value is very different than applying it.

• Languages like Racket with Lisp-like syntax use parenthesized prefix notation
where the function appears after the open parenthesis and space is the separator.
Hence 2+2 is written (+ 2 2).

27

In tools that process programs, programs are almost always represented as
trees, a representation called abstract syntax. Parentheses do not appear in
such representations because all “grouping” is explicit in the tree structure.
For example, the expression (17 + 5) – 3 can be represented:

where the root is the “outermost” operator and the children are trees
representing the operand expressions. In such a tree, all operators including
constants are tree nodes and every operator node of arity k > 0 has k
subtrees representing the operands. There is a one-to-one correspondence
between fully parenthesized prefix notation (since the operator appears
immediately before it operands) and tree notation for simple expressions.

In Racket, the expression above is written (- (+ 17 5) 3)

+

17 5

Program Syntax as Trees

28

- 3 3

