
1

Generative (Non-structural) Recursion

Comp 311

Rice University

Corky Cartwright

COMP 311, Fall 2022 2

The Recipe Until Now

• Data analysis and design using structural recursion

templates (with minor cheating)

• For each function in the design (visible interface)

• Define the data

• Type & behavioral contracts

• Examples (stated as tests)

• Template Instantiation

• Precisely follows the structure of the data we consume

• Using this template, we can do "almost everything”

• Coding

• Testing (trivial if Examples are written using check-expect)

COMP 311, Fall 2022 3

Structural Recursion

• Best problem-solving strategy

• For the vast majority of functions over recursive data.

• Yields satisfactory efficiency in most cases.

• Yet cannot, in principle, compute all computable

functions.

• Can only express primitive recursion for those of you who

know some computability theory! All structurally recursive

(primitive recursive) programs terminate

• Ill-suited to an important class of problems that technically

can be solved using structural recursion but can be solved

more cleanly and efficiently using non-structural methods.

COMP 311, Fall 2022 4

Non-structural Functional

Programs

• Best explained by presenting some

examples before discussing the general

template.

Problem: efficiently sort a list of numbers

Good solutions: merge-sort, quicksort

COMP 311, Fall 2022 5

Merge Sort
• You have already seen this example in Assignment 2.

Idea:

• Base case: list of length 0 or 1

• Inductive case:
split the list into two (almost) equal parts
sort each part
merge the two results

• Why non-structural? We recursively sort two “sub-lists”
(but not tail lists), so this is not structural recursion. But
the two lists are strictly smaller (about half the size) of the
original list.

• Even the merge operation technically does not use
structural recursion but it is so close (particularly when
written an OO language) that it might be overlooked.

COMP 311, Fall 2020 6

QuickSort

• Invented by C.A.R. ("Tony") Hoare

• Functional version is derived from the
imperative (destructive) algorithm; less
efficient but still works surprisingly well

• Idea:
• Base case: list of length 0 or 1

• Inductive case:
• partition the list into the singleton list containing first, the

list of all items <= first, and the list of all items > first

• sort the the lists of lesser and greater items

• return (sorted lesser) + (first) + (sorted greater) where +
means list concatenation (append)

COMP 311, Fall 2020 7

Quicksort Breaks Structural Template

(define (qsort l)

(cond [(empty? l) empty]

[else

(local ((define pivot (first l))

(define other (rest l)))

(append

(qsort [filter (lambda (x) (<= x pivot)) other])

(list pivot)

(qsort [filter (lambda (x) (> x pivot)) other])))]))

COMP 311, Fall 2020 8

Quicksort Still Terminates

(define (qsort l)

(cond [(empty? l) empty]

[else

(local ((define pivot (first l))

(define other (rest l)))

(append

(qsort [filter (lambda (x) (<= x pivot)) other])

(list pivot)

(qsort [filter (lambda (x) (> x pivot)) other])))]))

Why?

COMP 311, Fall 2022 9

Not so QuickSort

(define (qsort l)

(cond [(empty? l) empty]

[else

(local ((define pivot (first l))

(define other (rest l))

(append

(qsort [filter (lambda (x) (<= x pivot)) rest])

(list pivot)

(qsort [filter (lambda (x) (> x pivot)) rest])))]))

What if (first l) is the largest element in l?

COMP 311, Fall 2020 10

A More General Recipe

• Data analysis and design

• Contract & purpose, header

• Examples

• Template Instantiation

• Much more flexible than before (non-structural)

recursive calls are applied to simpler argument lists

• Coding

• Explicit termination argument

• typically a well-founded measure of the argument list that

strictly decreases

• Testing

COMP 311, Fall 2020 11

Generative Template

(define (gen-recursive-fun problem)

(cond

[(trivially-solvable? problem)

(determine-solution problem)]

[else

(combine-solutions

... problem ...

(gen-recursive-fun (gen-problem-1 problem))

…

(gen-recursive-fun (gen-problem-n problem)))]))

COMP 311, Fall 2020 12

Sample termination argument

• Quicksort terminates because each recursive
call (qsort l) reduces the metric (length l).
In particular, both
[filter (lambda (x) (<= x pivot)) other] and
[filter (lambda (x) (> x pivot)) other]

are sublists of other which is shorter than l

• Without such an argument a non-structural
program must be considered incomplete.

COMP 311, Fall 2022 13

General framework for proving termination

• Devise a metric (a size function) with some familiar

well-founded structural type as the output (usually

nat) for the problem and show that each recursive

call involves a smaller problem than the original

one.

• In pathological cases, this ordering may require the

use of lexicographic ordering on n-tuples (or

unbounded sequences) of data values. These

pathologies are rare in practice. Not aware of a

single occurrence in DrJava code base.

COMP 311, Fall 2022 14

Precise Termination Arguments

Binary search fallacy

• If we start with an interval S wide, then we only need

limited number of steps to reach an interval R wide. In

particular, the intervals will proceed as S, S/2, S/4, ...,

and will reach size smaller than R in log2 (R/S) steps …

• We are engaging in perilous handwaving, because

when S reaches 2, the details involving comparison (<,

<=) and interval representation are critical. Sloppy

reasoning/coding confusing properties of the rationals

rather than natural numbers leads to non-termination.

COMP 311, Fall 2022 15

Why Generative Recursion?

• What if we can choose between

• a structural solution and

• a generative solution?

• Often, the second is much faster

• Sorting

• Simpler example from book: greatest-common-divisor (GCD)

gcd(6,9)=3, gcd (99, 18) = 9, etc.

structural version so brain-damaged for this problem that I could

not follow the narrative. I had to infer what the code did.

Rant: local functions in the HTDP book often have no contracts!

• Even better example: searching an ordered list where direct

access has constant cost, e.g., an array. (Binary Search)

COMP 311, Fall 2022 16

Are all data types structural?

• Structural (inductively defined) => well-founded? Yes, if all constructors are strict (preserve

divergence). Not necessarily if constructors can be non-strict (“lazy”) implying tree structure can be

infinite (such as infinite lists).

• Reasoning about limit points (infinite objects) is a technically hard question.

• We avoid infinite trees if possible, eliminating the ugly case of limit points! But in the reali world, we

cannot completely avoid infinite trees. Infinite trees (or similar infinite constructions) are required to

formalize some forms of data like functions, real numbers, and infinite streams and trees.

• Question: Is the structural ordering always useful in proving properties of a type? In my view, yes.

But structurally inductive reasoning becomes delicate because passing to the limit (reasoning

about infinite objects can be delicate). Fixed-point induction works tolerably well. Co-induction is

another option, but not to my personal taste.

• How do we define the domain of functions A  B? The standard answer is non-structural and non-

computational. Dana Scott (in 1970) showed how the define A  B can be defined using limits

with (in my view) astounding consequences, namely the cardinality of A  B never exceeds the

continuum (real numbers). This subject (“domain theory”) is even beyond the scope Comp 411.

Very few Computer Science departments have courses that cover this material.

• It is possible (but technically difficult) to formalize all forms of program data including computable

sequential functions (with the natural approximation ordering) with only well-founded orderings.

COMP 311, Fall 2022 17

Some Generative Algorithm Families

• Sorting and Searching

• Mathematical iteration: bisection, Newton's
method. (Dirty secret: real numbers truly are
limits of Cauchy sequences.)

• Backtracking (traversing a maze, 8 queens)

• Dynamic Programming (memoization)

Generally the structural algorithms are so trivial
that they typically aren't discussed as
algorithms. Nothing interesting to say. Some
algorithms are structural (like depth-first search)
but this fact is not immediately apparent.

COMP 311, Fall 2022 18

The Tradeoff (if we can chose)

• How do we chose between

• a structural solution and

• a generative solution?

• Speed vs. clarity (structural recursion); speed often wins in
practice. Generative solutions are typically nearly as clean as
structural solutions. (Are quicksort and mergesort significantly
harder to understand than insertion sort?) Termination proofs are
usually easy.

• In some cases, there is no credible structural algorithm, e.g., for
most graph problems. The structural algorithm may be goofy and
non-intuitive.

• Chapter 26 in HTDP presents a structural algorithm for computing
GCD, which is a good example. I studied it last year but I don’t remember
how to do it. Euclid’s algorithm is so much nicer.

