
1

Lazy Evaluation or Non-strict Constructors

Comp 311

Rice University

Corky Cartwright

COMP 311, Fall 2023 2

Some Basic Definitions

• The element  (called bottom) implicitly exists in all data types (domains)

because we can write a divergent function of any type using recursion. What

does  evaluate to? Nothing! It diverges.  is not a value! In contrast to

runtime errors,  does not appear as an discrete event during evaluation.

• Many computer scientists (following some eminent logicians like Kleene) prefer

to leave divergence implicit and only talk about total functions (functions that

never diverge). This is a widely held point-of-view. The logical framework Coq

for specifying the behavior of programs and proving their properties

(correctness) only supports total functions.

• I dissent from this view. Functional programs inherently define partial functions.

Even imperative programs are inherently partial. Some of them (most of the

ones we use in practice) are total (assuming we consider errors as legal return

values). It is easy to take logical theories of computational domains (e.g.,

Peano’s axioms for the natural numbers) and slightly revise them to include 

and errors.

COMP 311, Fall 2023 3

Strictness
• A conventional primitive function that evaluates all of its arguments is strict: it diverges if

any of their arguments are  (ignoring aborting errors).

• Assume all data domains include aborting errors. Then a conventional primitive function
f that evaluates all of its arguments is error-strict iff the following condition holds: if an
argument ai diverges or returns an aborting error element and all preceding arguments
evaluate to ordinary values (non-error elements), then the function returns the result of
evaluating ai.

• Conventional constructors (as in the make-<struct-name> operations created by
Racket define-struct) are conventional primitive functions.

• Lazy constructors are not conventional constructors; they never diverge or return error
elements. (Note: I am confining my attention to constructors that are non-strict in all
arguments. Some constructors are lazy only for selected arguments.)

• An n-ary lazy constructor c takes n argument expressions M1, …, Mn and leaves them
unevaluated. It returns a value c(M1, …, Mn) called a lazy value or a lazy construction.
Programming languages with lazy constructors differ on whether they support equality
testing of lazy constructions. Of course, the equals? operator diverges when applied to
two identical infinite lazy trees. It also diverges or aborts with an error if it inspects a tree
node that is  or throws an error during the comparison process.

COMP 311, Fall 2023 4

Lazy data types (domains)

• Every lazy constructor c has an associated type (unimaginatively called)

c consisting of the elements

  c(v1). …, c(vi), … (assuming c is unary)

• where v1 …, vi, … are arbitrary Lazy Racket values.

(In statically typed languages, each vi is restricted to a specified type.)

• But there is a catch. The domain of program values is closed under

infinite ascending chains of finite values where the ordering is tree-

approximation. Limit points of ascending chains of finite elements

(infinite trees) are values in the lazy domain, but computations only

manipulate finite approximations including suspensions (unknown

values) . A finite tree approximates itself and any elaboration of itself

where a bottom leaf is replaced by another value. Infinite trees are

values in the lazy data domain, but only finite approximations are used

in actual computations.

COMP 311, Fall 2023 5

Tree Approximation
• In Racket with lazy constructors, consider any Racket expression M built solely

from lazy constructors and atomic constants. Without loss of generality, we

assume that the outermost constructor is cons. So M must have the form

(cons U V)

where U and V are Racket expressions built solely from lazy constructors.

• Without evaluating U and V, we do not know what the left and right subtrees of

M are. But we know (cons? M) is true. In our semantic model,

(cons  )

approximates all (lazy) trees with cons at the root.

• In general, a tree with some  leaves approximates any tree that replaces the

 leaves by values (which may contain embedded  leaves). Hence,

(cons  ) ⊑ (cons  (cons  ))

where ⊑ denotes the approximation relation on lazy trees. (cons  )

approximates infinitely many other finite and infinite trees,

COMP 311, Fall 2023 6

Lazy Racket and LazyRacket
DrRacket includes support for a language called Lazy Racket that is

“experimental” and flawed. Here are two sample Lazy Racket programs and

their results that illustrate this point:

(define AND (lambda (x y) (and x y)))

(AND false (/ 1 0)

 false

(and false (/ 1 0)

 (delay ...)

I don’t think the current DrRacket implementation corresponds to a tractable set

of reduction rules; it is simply broken. As any of you who take Comp 411 will

learn, it is straightforward to implement an interpreter for lazy Racket. I think the

developers of DrRacket simply made some mistakes in the implementation.

We will define our own dialect of lazy Racket (called LazyRacket [one word] as a

simple variation of Core Racket.

COMP 311, Fall 2023 7

LazyRacket

In fact, the syntax of LazyRacket is identical to the syntax of Core Racket. The only

difference between Core Racket and LazyRacket are the rules for evaluating function

applications (the beta-reduction rule), constructor applications (including cons), the

definition of values, and accessor applications.

• In LazyRacket, lambda-abstractions are reduced using the call-by-name version of beta-

reduction, which is the form of beta-reduction that appears in the original pure lambda-

calculus, omitting the value-restriction on arguments:

((lambda (x1 x2 ... xn) E) M1 M2 ... Mn) → E[x1 ← M1, x2 ← M2, ... Xn ← Mn]

• All constructor applications (c M1 M2 ... Mn) are values, i.e., the argument

expressions M1, M2, ..., Mn are not required to be values.

• The law for evaluation accessor applications is generalized to address the fact that the

selected argument expression is not necessarily a value.

COMP 311, Fall 2023 8

LazyRacket Semantics

• The call-by-name beta-reduction rule in LazyRacket is:

((lambda (x1 x2 ... xn) E) M1 M2 ... Mn) → E[x1 ← M1, x2 ← M2, ... Xn ← Mn]

where E[x1 ← M1, x2 ← M2, ... Xn ← Mn] means E with all free occurrences of

x1, …, xn replaced by M1, …, Mn. We can duck the complication of safe-

substitution by prohibiting the reuse of variable names bound in the sequence of

define operations at the beginning of a program. (Recall Problem 5 on

Homework 3.) In other words, variables that are bound by define must be

unique. This reduction rule is simply the beta-reduction rule from the classic

lambda calculus.

• The only other changes to the evaluation rules for Core Scheme are a change

to the definition of values described on the previous slide and a slight extension

of the rules for reducing applications of accessors shown on the next slide.

COMP 311, Fall 2020 9

LazyRacket Details

The reduction rules for construction accessors such as first and

rest are genralized to match this change in the definition of values:

(first (cons M1 M2)) => M1

(rest (cons M1 M2)) => M2

The reduction rules for applications of declared accessors are

analogous.

COMP 311, Fall 2023 10

Examples

• Problem 2 from HW03 in LazyRacket rather than Core Racket

(define AND (lambda (x y) (if x y false)))

(AND false (/ 1 0))

=> ...

((lambda (x y) (if x y false)) false (/ 1 0))

=> ...

(if false (/ 1 0) false) ; beta-reduction yet (/ 1 0) is not a value

=> ...

false

• Accessing a field of a lazy construction

(rest (cons (/ 1 0) empty)) => empty

COMP 311, Fall 2023 11

More Examples

Simple example in Lazy Racket (using cons)

(define zeros (cons 0 zeros)) ; rhs is a value

(first zeros)

=> ...

(first (cons 0 zeros))

=> ...

0

What would this program mean in Core Racket

(define zeros (cons 0 zeros))

(first zeros)

=> zeros is used before its definition

COMP 311, Fall 2020 12

More Examples cont.

Simple example involving lazy primitive operations

(define zeros (cons 0 zeros))

(rest zeros) ;; zeros is not a value

=> ...

(rest (cons 0 zeros)) ;; (cons ...) is a value

=> ...

zeros ;; zeros is not a value

=> ...

(cons 0 zeros) ;; (cons ...) is a value

COMP 311, Fall 2023 13

Terminology

Beware: in the literature, the term lazy evaluation does not have completely

consistent usage.

• In some usages, it only refers to the semantics of constructors, which

only involves changing the definitions of value and the corresponding

accessor operations.

• In others, the term lazy evaluation includes using call-by-name beta

reduction as well. I prefer the former because it embraces the idea that

constructors can be lazy in the context of call-by-value language like

Core Racket or Java. In Scala, a call-by-value language, constructors

can be declared lazy independently of the semantics of function

application (call-by-vaue vs. call-by-name beta-reduction).

