
1

Techniques for Supporting Lazy Evaluation

and Call-by-name

Comp 311

Rice University

Corky Cartwright

COMP 311, Fall 2022 2

Hacking Lazy Evaluation and Call-by-name
• Mainstream programming languages discourage the use of lazy evaluation by only

supporting strict constructors and call-by-value argument passing in

methods/procedures, the primary mechanism for defining new program operations.

• There are good software engineering justifications for this bias. Supporting a coherent,

intellectually tractable formulation of call-by-name argument passing requires a truly

radical language design like Haskell with no side effects, but Haskell is so radical that

all data constructors are lazy as well. The conjoining of either call-by-name or lazy

evaluation with mutation generates horrible results. Modern languages with the

exception of Haskell (which has no mutation) and Scala (where the inclusion of support

for call-by-name is really an implicit admission that this language is “For Experts Only”)

do not support call-by-name evaluation. Experts know that call-by-name should only

be used with argument expressions with no side-effects.

• Nevertheless, there are straightforward ways to “hack” support for lazy evaluation and

call-by-name in many mainstream languages.

• Manual use of thunks (described on the next slide) which is notationally ugly.

• Macros to support clean notation for lazy evaluation in call-by-value languages).

COMP 311, Fall 2022 3

Using Thunks to Defer Evaluation
• In Racket, what construct suppresses evaluation of program text?

lambda-abstraction. In fact, this property holds for all languages that

provide reasonable support for functions as data. We need to explicitly

encapsulate the program text for evaluation later. How can we do this?

By making the program text the body of a function of no arguments (in ML

we define unary functions that take an input of the degenerate argument

type Unit which only has one element (denoted ()) which is never used.

• To make the Racket cons operation effectively lazy, we pass it the

arguments (lambda () M) and (lambda () N) instead of M and N. How

do we observe the values of the first and rest portions of such a lazy

list l? By evaluating ((first l)) and ((rest l)). If l is a thunked

lazy cons construction, all that ((rest l)) evaluates is the body of the

second thunk (N in our example).

• This approach is mathematically clean but nearly unreadable.

COMP 311, Fall 2022 4

Improving the Ugly Notation

• Wrapping all arguments to lazy constructions in thunks and

explicitly applying all of the values embedded in such constructions

using application to no arguments (in languages in the ML family

where lambda-abstractions must have at least one argument, the

application is to the degenerate unit value) is ugly, ugly, …

• The workaround: define lazy constructors as macros that expand

to the corresponding strict constructor composed with thunk

wrapping for each argument.

• What is a macro? A syntactic rule performed by the compiler that

expands a macro invocation (which typically looks just like a

function application) into standard source code that actually

implements the macro operation.

COMP 311, Fall 2021 5

Brief Aside Regarding Macros

• The basic idea behind macros is extremely simple: macros are

syntactic abbreviations. A macro has free metavariables that stand

for program expressions. Neither the left-hand side or right-hand side

of a macro can mention program variables. In Core Racket, the

delay primitive in Advanced HTDP Racket dialect cannot be defined

as a Core Racket function! Why? Because all Racket functions

defined using lambda or define are strict, but delay is not. On the

other hand, a version of delay is trivial to define as a macro

abbreviation:

(delay M) => (lambda () M)

• Given this formulation of delay, it is trivial to define the force

function

(define (force s) (s))

COMP 311, Fall 2021 6

Brief Aside Regarding Macros II

• Racket uses a slightly more complex representation so it can recognize

delayed values using the predicate promise?, namely by wrapping the

thunk in a built-in unary constructor called promise:

(define-struct promise (thunk))

(delay M) => (make-promise (lambda () M))

(define (force s) ((promise-thunk s)))

• Most macro systems go far beyond simple abbreviations, enabling fancy

macros to introduce new variable bindings. Keeping macro variables

separate from program variables (from the context where the macro is

expanded) is a surprisingly subtle language design problem and most

macro systems get it wrong. This issue has been extensively studied in

the Scheme literature under the subject heading of “hygienic macros”.

• The HTDP Advanced language includes support for macros.

COMP 311, Fall 2021 7

Using Macros to Implement Lazy Constructors

• We can implement any lazy constructor as a macro that maps its argument

expressions to the application of a corresponding strict constructor to thunks wrapping

the argument expressions as lambda-abstractions--just as we implemented delay as

the strict promise constructor applied to a lambda-abstraction wrapping the delayed

argument.

• Macros are under-utilized in modern languages because surface (concrete) program

syntax is simply a sequence of tokens rather than a tree with internal structure. So

macros map strings to expanded strings which may or may not be translated to the

intended syntax by the language parser because the precedence rules governing the

parsing of language source text are complex. To prevent misinterpretation,

programmers typically include extra parentheses in such macros, making them difficult

to read. C macros are a great example.

• All high-level programming languages conceptually have an intelligible tree-based

(abstract) syntax that programmers never see. In this representation, macros are easy

to express and understand. The Racket/Scheme/Lisp family of languages is ideal for

macros because the funky parenthesized concrete syntax of Lisp is similar in structure

to abstract syntax.

COMP 311, Fall 2021 8

Representing Lazy cons as a Macro

• Racket has a very sophisticated macro system but it is not included in any of the

HTDP dialects. Select the “Racket” language to run the code below

• In Racket simple macros are defined using the construct define-syntax-rule.

• To learn more about Racket macros, read “Fear of Macros”, a document linked from

the Racket Guide or Chapter 16 of the Racket Guide (bundled as part of your

DrRacket installation) entitled Macros.

• Using define-syntax-rule, we can easily define lazy-cons, lazy-first, and lazy-rest

as follows:

#lang racket

(define-syntax-rule (lazy-cons f r)

(cons (lambda () f) (lambda () r)))

(define-syntax-rule (lazy-first lc) ((car lc)))

(define-syntax-rule (lazy-rest lc) ((cdr lc)))

• Note: In contrast to the HTDP languages, the “Racket” language requires the use of

car and cdr instead of first and rest. I presume that Lisp tradition is being

respected.

https://www.greghendershott.com/fear-of-macros

COMP 311, Fall 2021 9

Example cont.

• The simple functional code in our macros is not efficient because it

re-computes the values of expressions! The thunks embedded

inside a lazy-cons construction can be evaluated many times.

More elaborate macros can be defined that include updateable

cells inside the lazy-cons construction so that the construction

arguments are only evaluated once.

• How do we avoid re-computation in functional languages?

• Factor out common sub-expressions using local or let.

• If our functional language accommodates mutation

(Racket/Scheme/Lisp/ML except Haskell), we can use benign

mutation to cache values when factoring is insufficient (e.g.,

naïve Fibonacci). This optimization is often called

memoization.

COMP 311, Fall 2021 10

Memoization

• Most important manual optimization in functional programming, yet it is

not functional!

• Rule of thumb: mutation is OK if it is encapsulated (externally invisible)!

• Common special case: the mutated cell is quasi-constant: “not yet

computed” or a constant.

• Such mutation is “assign once” changing unbound (often represented by

a default value such as 0 or empty) to a binding.

• In standard memorization, recursive calls are recorded in a table (often a

hash table) and function evaluation avoids performing the same

computation by consulting the table before executing the body.

• We are going to take a glimpse at the core imperative features of Racket

in the next lecture, but you will not have to write any imperative code in

Racket; I find this form of optimization more natural in the context of Java.

