
1

A Glimpse at Imperative Racket and Memoization

Comp 311

Rice University

Corky Cartwright

COMP 311, Fall 2023 2

All Real “Functional” Languages Except

Haskell Support Imperative Operations

Why do nearly all real “functional” languages include imperative operations?

• The real world is imperative (changes state). The real world and many

conceptual models evolve (change state) over time. In computations

simulating these models, it is often convenient (and conceptually economical)

to let execution recapitulate evolution. During the simulation of the model,

changes in the state of the model are represented by changes in the current

program state. In such contexts, the discreet use of imperativity may be

logically simpler in many cases than a purely functional approach.

• Our computer hardware is imperative. At some point, even pure functional

code must be executed on hardware where every computation step (execution

of a machine instruction) involves mutation. To produce efficient machine code

to solve a problem, we often need to describe the computation in imperative

terms. Most fast algorithms perform incremental operations that are

imperative.

COMP 311, Fall 2023 3

Functional Programming Culture

Imperative computation must be clearly identified as such. When imperativity is used

“internally” to improve performance, it should be encapsulated when possible behind APIs

that are functional.

Examples of embedded imperativity (invisible to agents using a black box API)

• Memoization

• Fast imperative algorithms for solving problems which may have slower functional

equivalents.

• Simulation of physical systems: the change in state over short time intervals is

typically small and the successor state in discrete simulation is often a simple

update to the current state. In some cases, it is possible to preserve the old state

and construct the new state by sharing pieces of the previous state but many data

structures (like arrays) must be completely copied if the old state is to be

preserved, compromising the efficiency of the update operation. Essentially all

physical simulations rely on destructive updates. On the other hand, it may be

convenient to build a complete new representation particularly in the context of

parallelism. Parallel execution often requires copying for the sake of data locality.

COMP 311, Fall 2023 4

FP Culture Continued

In Racket/Scheme

• Most mutation operations (at least those in libraries) in Racket/Scheme end with a

! (read “bang”) character. Matthias Felleisien loved to title the lecture introducing

the imperative extension of Scheme as the “The Big Bang!” (He also liked the title

“Church and State” where “Church” refers to Alonzo Church who invented the

lambda-calculus.)

• Simulation of physical systems: the change in state over short time intervals is

typically small and the successor state in discrete simulation is often a simple

update to the current state. In some cases, it is possible to preserve the old state

and construct the new state by sharing pieces of the previous state (which has a

simple “algebraic” implementation) but many data structures (like arrays) must be

completely copied if the old state is to be preserved, compromising the efficiency

of the update operation. Essentially all physical simulations rely on destructive

updates. On the other hand, it may be convenient to build a complete new

representation particularly in the context of parallelism. Parallel execution often

requires copying information across separate tasks for the sake of data locality.

Mutation Example

Naïve Fibonacci with Memoization
(define fib

(local

[(define results (make-hash)) ;; results is empty hash table

(define (fibHelp n)

(cond [(< n 2) 1]

;; if n is in the memo table, return the cached value

[(hash-has-key? results n) (hash-ref results n)]

[else ;; bind sum to fib(n)

(let [(sum (+ (fibHelp (- n 1)) (fibHelp (- n 2))))]

(begin

(hash-set! results n sum) ;; add <n,sum> to table

sum))]))]

fibHelp))

COMP 311, Fall 2023 5

Bottom Up Improvement

COMP 311, Fall 2023 6

• Demo of

• naïve fib,

• memoized naïve fib,

• fast fib (linear algorithm with help fun)

• log fib

• In practice, memoization is very

powerful.

Aside: Introducing local bindings

Racket/Scheme supports three different forms of “let” (a common name in

functional languages for an expression that introduces new local bindings) that

only differ on the text that is in the scope of the new bindings

• (let [(x1 E1) ... (xn En)] E)
;; equivalent to ((lambda (x1 ... xn) E) E1 ... En)

• (let* [(x1 E1) ... (xn En)] E)
;; equivalent to (let [(x1 E1)] ... (let [(xn En)] E) ...)

• (letrec [(x1 E1) ... (xn En)] E)
;; equivalent to (local [(define x1 E1) ... (define xn En)] E)

In all three constructs, the new local variables x1, …, xn are

“visible” in the body E. In let, the new local variables are “invisible” (not in

scope) in the right-hand-sides E1, …, En of the new local bindings. In let*, each

local variable xi is visible in subsequent right-hand-sides Ei+1, …, En. In letrec,

all local variable are visible (but not necessarily defined) in all right-hand-sides

E1, …, En. Forward references must be embedded inside lambda-abstractions

that defer evaluation.

COMP 311, Fall 2023 7

Observations About Various let forms

Ordinary let appears in most functional languages because it simply

abbreviates a lambda application:

(let [(x1 E1) ... (xn En)] E) ((lambda (x1 ... xn) E) E1 … En)

The let* operation has a straightforward definition in terms of let:

(let* [(x1 E1) … (xn En)] E)

(let [(x1 E1)]

(let …

(let [(xn En)] E) … E) …))

which incidentally is how Java defines the meaning of a sequence of local bindings.

The letrec operation is alternate notation for local:

(letrec [(x1 E1) … (xn En)] E)

(local [(define x1 E1) … (define xn En)] E)

which is how Algol-like languages define the meaning of a sequence of local

bindings. letrec is the most expressive of the three because it supports recursive
definitions. If you use fresh names for local variables, it subsumes the others.

COMP 311, Fall 2023 8

COMP 311, Fall 2023 9

Core Imperative Operations

• Assignment

(set! v E) rebinds variable v to the value of E

• Struct field mutation (except cons)

(<struct-name>-<field-name>! E1 E2)

changes the specified field in the struct identified

by E1 to the value of E2; if the value of E1 is not an

instance of the specified struct, an error is thrown.

• Imperative sequencing

(begin E1 … En)

evaluates E1, … , En and returns the value of En.

COMP 311, Fall 2023 10

Lazy Evaluation in Racket

• The workaround: define lazy constructors as macros that expand lazy

constructor applications to applications of the corresponding strict

constructors composed with thunk-wrapping each argument.

• What is a macro? A rule performed by the compiler that expands a

macro invocation (which typically looks just like a function application)

into ordinary language code that actually implements the macro

operation. The compiler completely expands all macros.

• Macros are under-utilized in modern languages because surface

(concrete) program syntax is so ugly and messy to manipulate. Strings

separated by varying amounts of whitespace. Ugh!

• Programs conceptually have an intelligible tree-based (abstract) syntax

that programmers never see. At this level, macros are easy to express

and understand. The Racket/Scheme/Lisp family of languages is ideal

for macros because concrete syntax abstract syntax.

COMP 311, Fall 2023 11

Optimizing Lazy Evaluation in Racket

• No field value (a thunk) in a lazy construction should be evaluated more than once. This

optimization is a trivial form of memoization. This approach to evaluating the arguments of a

construction is called “call-by-need”. It is the preferred implementation of call-by-name in beta-

reduction (function application) in purely functional languages as well.

• Where do we store the value? In the same cell as the pointer to the code for computing it.

• In Scheme, a cons node is mutable, so we simply use the first and rest fields in a lazy cons

node to store either a pointer to a thunk or its value.

• It is easy (as we showed in last lecture) to write Scheme macros to implement optimized forms of

lazy-cons, lazy-first, and lazy-rest.

• What is a macro? A rule performed by the compiler that expands a macro invocation (which

typically looks just like a function application) into ordinary language code that actually

implements the macro operation. The compiler completely expands all macros.

• Macros are under-utilized in modern languages because surface (concrete) program syntax is so

ugly and messy to manipulate.

• Programs conceptually have an intelligible tree-based (abstract) syntax that programmers never

see. At this level, macros are easy to express and understand. The Racket/Scheme/Lisp family

of languages is ideal for macros because concrete syntax abstract syntax.

COMP 311, Fall 2023 12

Complication in Racket: cons Is Immutable

• In Scheme, a cons struct (which is built-in to support lists) is mutable;

in the official Racket languages, it is not. In official Racket, there is a

mutable form of cons called mcons. The HTDP languages predate the

addition mcons to Racket. In the days of DrScheme (when the first edition

of HTDP was written), cons was mutable at the Advanced Student level

and beyond (like R5RS, PrettyBig). Today, mutable cons only exists in

Racket R5RS (standard Scheme) but the implementation is now done using

the Racket mcons package with mcons, set-mcar!, and set-mcdr!

renamed as cons, set-car!, and set-cdr! to meet the R5RS standard.

Why introduce all of this complication to support an immutable definition of

cons? Flexibility + Optimization! mcons is useful in some situations (like

the implementation of “call-by-need” described below) but it is pathological

from the perspective of code optimization.

COMP 311, Fall 2023 13

Supporting Call-by-need in Racket

• Since cons is immutable, we cannot directly change the contents of the car

(first) and cdr (rest) fields. We have to embed boxes (box is a unary mutable

constructor built-in to Racket and Scheme) inside the cons struct adding a level

of indirection in the machine representation. At this point, it is probably better to

use delay, a built-in lazy unary constructor in Racket/Scheme (it is not part of

Core Racket) which performs our optimization. Built-in primitives typically are

optimized beyond the that what be achieved by equivalent source code. Since

delay is lazy, it eliminates the need for thunks (it already includes similar

machinery). Nevertheless, I am skeptical of this implementation of laziness

because of the extra level of indirection (pointing to the delay descriptor), it will

be slower that the macro I wanted to write but could not because cons is now

immutable. On the other hand, there are many program sound program

transformations involving immutable cons that break when cons is mutable.

• I am no more optimistic about the eventual fate of Racket than I am about the

fate of Scala. Both are byzantine platforms created primarily for use by insiders

(wizards who have spent years learning, implementing, and extending them).

COMP 311, Fall 2023 14

Practical Recommendations Regarding FP

• Only incorporate imperativity when it is semantically simpler (a

judgment call) than a purely functional approach or significantly

more efficient.

• If possible, encapsulate imperativity inside visible operations with

purely functional contracts. Memoization is a good example of

such encapsulation. Memoized naïve fib has the same contract

and visible behavior (other than better performance which leaves

extensional behavior unchanged) as unmemoized naïve fib.

• In Haskell, use monads that mimic explicit imperativity. I am not

convinced this approach is better than tasteful, explicit imperativity

but it is purely functional. When writing Haskell, do as …

