
1

Racket Review

Robert “Corky” Cartwright

Department of Computer Science

Rice University



COMP 311, Fall 2021 2

Core Racket Data

Built-in

• Booleans: true, false (also written #true, #false)

• Numbers including unbounded integers, rationals, inexact, complex 
(inexact and exact)

• Symbols: 'A, … (almost any finite sequence of chars, other than 
blank, preceded by a tick (') mark. )

• Strings: (excluded from subset used in class, homework, and exams)

• Lists: empty (also written '()), non-empty lists constructed using 
cons where first element is any data value and second is a list.  

Recall the library function list which has variable arity 
(polyvariadic?).

• Other built-in forms of data not included in our subset (vectors, …)



COMP 311, Fall 2021 3

Core Racket Data cont.

Built-in: (cont.)

• Functions including primitive functions (like the functions 
for manipulating built-in data) and library functions (from 
Intermediate Student with lambda Racket language)

• Program defined functions denoted by lambda-
abstractions.

Defined Functions:

• Via define operations (not the same as what can be 
defined directly as lambda-abstractions if execution 
behavior is considered)

• Generated by define-struct operation



COMP 311, Fall 2021 4

Core Racket Syntax

Expressions:

• Constants for all built-in primitive data values; the term primitive 

values includes primitive functions but excludes lambda-

abstractions.

• lambda-abstractions

(lambda (x1 … xn) e) where n ≥ 0

• Applications of an expression M that evaluates to a primitive or 

defined function f (including lambda-abstractions) to 0 or more 

expressions:

(M e1 ... en) where n ≥ 0.

Note that some applications (constructors to values) are values.

• Conditional expressions:

(cond [p1 e1] ... [pn en]) where n > 0.



COMP 311, Fall 2021 5

Core Racket Syntax cont

Expressions (cont.): 

• Other Boolean expressions (which are not applications)

(or e1 ... en) where n > 1

(and e1 ... en) where n > 1

Operations that are not expressions:

(define s e) where s is a symbol

A program is a sequence of define operations followed by an 

expression with no free variables in the program (no references to 

variables that are not declared (in a define or lambda abstraction) 

and in scope).  The Racket interactions windows supports the 

interleaving of define operations and expressions.  Every expression 

is evaluated in the context of the define operations that precede it.



COMP 311, Fall 2021 6

Some Abbreviations

• (define (f x1 … xn) e) abbreviates

(define f (lambda (x1 … xn) e))

• List abbreviations 

'( . . . ) where the preceding is a Racket

list containing no symbols annotated with tick 

marks or identifiers designating constants like 

true, false, empty
Note: '( () ) is a list abbreviation; '(empty) is illegal 

in Core Racket; it evaluates to (list 'empty) in 

DrRacket teaching languages. 



COMP 311, Fall 2021 7

Reduction Semantics

Details are specified in the handout on Laws of Evaluation.

Big picture:  The reduction process reduces expressions 

to values. Given a program, the value of the expression 

following the block of define operations is the result or 

answer of the program computation.

A value is a data constant or a lambda-expression.



COMP 311, Fall 2021 8

Computation As Repeated Reduction

• Every Racket program execution is the evaluation of 

a given expression constructed from primitive or 

defined functions and variables (constants).

• Evaluation proceeds by repeatedly performing the 

leftmost possible reduction (simplification) until the 

resulting expression is a value.

• A value is the canonical textual representation of any 

constant (ignoring lazy lists). Numbers, booleans, 

symbols are all values.



COMP 311, Fall 2021 9

Reduction for primitive functions

• A reduction is an atomic computational step that replaces some 
expression by a simpler expression as specified by a Racket 
evaluation rule (law).  Every application of a basic operation to values 
yields a value (where run-time error is a special kind of value).  

• Example reduction of expression built from primitive functions
(* (+ 1 2) (+ 3 4))

=> (* 3 (+ 3 4))

=> (* 3 7)
=> 21

• Always perform leftmost reduction 

• The following is not an atomic step, and so not a reduction
(- (+ 1 3) (+ 1 3))  =   0

It is an equivalence in the transitive closure of reduction. (In pure 
reduction languages, every value reduces to itself!)



COMP 311, Fall 2021 10

Reductions for defined functions

• Assume we defined the two functions
(define (area-of-box x) (* x x))

(define (half x) (/ x 2))

• Then Racket can perform these reductions

(half (area-of-box 3))

=> ((lambda (x) (/ x 2)) (area-of-box 3))

=> ((lambda (x) (/ x 2)) ((lambda (x) (* x x)) 3))

=> ((lambda (x) (/ x 2)) (* 3 3))

=> ((lambda (x) (/ x 2)) 9)

=> (/ 9 2)

=> 4.5

• Reduction stops when we get to a value or an error



COMP 311, Fall 2021 11

The Design Recipe
How should we go about writing programs?

1. Analyze problem and define any requisite data types including 
examples and determine what functions should be in the “API” 
for the problem.  Generate any struct definitions (code) and 
type definitions (comments) that you will need in writing the 
program.

2. State type and behavioral contracts and for each function in the 
API

3. Give examples of function uses and results

4. Select and instantiate a data-driven template for the function 
body; many are degenerate.

5. Write the function itself.

6. If the template uses generative (non-structural) show that it 
terminates.

7. Test it, and confirm that examples (tests) work.



COMP 311, Fall 2021 12

Informal Definitions of Types

Since type definitions are not embedded in Racket code, we 

provide them in program documentation written at the same level of 

rigor as informal mathematical proof (what is accepted as a proof in 

a proof-oriented math course).  Most interesting type definitions 

inductive.  The definition consists of a collection of clauses that 

either refer to known types, already defined types, and data  

constructors that take arguments of specified type, which may be 

the type being defined.  Data constructors are declared using 

define-struct. The inductive type list is built-in to Racket but 

we often identify regular subsets of the form (list-of alpha).  

Sometimes we impose constraints of subset types that cannot be 

expressed using simple rules (called “context-free”).  An example of 

such a type is ordered lists of numbers.



COMP 311, Fall 2021 13

What Is Distinctive About

Functional Programming

• A program is simply a collection of data definitions 
and pure function definitions which can be composed 
to describe a computation.

• Computation proceeds by performing leftmost 
reductions which embody obvious, nearly trivial rules.

• Well-written functional programs repeatedly 
decompose problems into simpler problems until we 
reach problems that can be solved by nearly trivial 
function definitions.

• Decomposition driven by structure of data being 
processed: data-directed design

• Most functional languages support functions as data 
values.



COMP 311, Fall 2021 14

Programming Techniques

• Data Driven Program Design

• Help functions.

• Abstracting common patterns as help/library functions. 

Don’t Repeat Yourself (DRY).  Trivial repeats are OK.

• Simplest form of abstracting common patterns is let
binding (codified as local in HTDP).

• Tail recursion with accumulators.

• Powerful functionals like map, filter, foldr, foldl

• Non-structural recursion (termination argument)

• Lazy evaluation (not part of Core Racket)



COMP 311, Fall 2021 15

Different Forms of let

• Not emphasized in HTDP.  Supported in Advanced 

teaching language.

• Important in practice but not difficult

• Three forms: let, let*, letrec

• HTDP local is alternate syntax for letrec

• Syntax is trivial and nearly identical for all three forms

• (let/ let*/letrec [(x1 e1) … (xn en)] e)

• The three forms only differ in the scopes of the new local 

variables x1, . . ., xn



COMP 311, Fall 2021 16

Different Forms of let

Scopes

• In let, the new variables are visible only in e

• In let*, each new variable xi is visible in all subsequent 

right-hand sides ei+1, …, en as well as e.

• In letrec, each new variable xi is visible in e1, …, en as 

well as e.

• Most functional languages support let; Java supports 

let* in compound statements, and Algol-like languages 

support letrec in blocks (as does Java with regard to 

class members. 


