
1

On to Java!

Corky Cartwright

Department of Computer Science

Rice University

From Racket to Java

2COMP 311, Fall 2024

• Racket and Java look completely different

• Don't be fooled. Java is very Racket-like underneath (perhaps
excessively so).

• Self-identifying data (not present in C, C++)

• Implicit sharing of objects (discouraging mutation); assignment does
not copy!

• C++ and C# vs. Java?

• In the Rice curriculum, C++ and C# are little-used.

• In industry, Java is still dominant. The flexibility of open source is
more important than the first-class generics offered in C#. C++ still
used where performance is paramount, but it is costly.

• For IOS (iPhones) and MacOS, Swift which has much in common with
Java except: (i) no VM and (ii) a reference-counted heap.

• For high-performance, Rust? A type safe language with C like syntax
and support for traits rather than unrestricted inheritance (as in C++).

• DrRacket → DrJava

Java Notation

3COMP 311, Fall 2024

Breezy Overview of Java

• Syntax is wordy and rather ugly. Lots of warts thanks
to C/C++ heritage. I presume everyone in this class
already knows how to program in Java (perhaps with
bad taste).

A functional programmers view of Java:
• What is a Java program? A collection of classes.

• What is a class? Rough answer: a Racket struct
declaration on steroids. Instead of writing functions
that manipulate structs, you add "methods" to a class
which are members of the class.

• All Java code belongs to some class.

Guiding Vision

4COMP 311, Fall 2024

• Good program design in Java is data-directed.
Design the data abstractions first; they will
determine the structure of the code. In OOP
circles, this data design process is often called
object-modeling.

• Software development is incremental and test-
driven. The same design recipe, as taught in this
course, can be used in both OO and FP languages.

• Key to OO approach: common data and
programming abstractions are codified as design
patterns. Primary control structure is dynamic
dispatch.

Secondary Theme: DrJava

5COMP 311, Fall 2024

• DrJava, our lightweight, reactive environment
for Java, was created specifically to foster
learning to program in Java.

• DrJava facilitates active learning; with DrJava
learning Java is a form of exploration.

• DrJava is not a toy; DrJava is developed using
DrJava. It includes everything that we believe
is important and nothing more.

Remainder of Lecture is Review

6COMP 311, Fall 2024

• Chapter 1 of my OO Design Notes presents

an expository summary of core Java from a functional

point of view. Skim it except for sections that cover

aspects of Java program design that you have not

seen in detail before, e.g., the visitor pattern.

• Since I suspect nearly all of you have seen

essentially all of the Java material before, I am going

to breeze through it in lecture.

• Important take-away. Note how I use familiar Java

constructs in perhaps unfamiliar ways to support a

functional programming perspective.

What Is an Object?

7COMP 311, Fall 2024

• Collection of fields bound to primitive values or

objects representing the properties of a

conceptual or physical object.

• Collection of operations called methods for

observing and changing the fields of the object.

Mutation is available, but should be used sparingly.

In a functional Java program, fields are not

mutated. We will only write functional

programs in Java (with a few noted exceptions).

These fields and methods often called the

members of the object (Java parlance).

How Are Objects Defined?

8COMP 311, Fall 2024

• All objects are created using templates
(cookie cutters) just like Racket structs.

• Instead of writing define-struct statements,
we write class definitions.

• Since all code is contained within a class,
class definitions tend to be much richer (and
more complex in real world examples) than
define-struct statements. After all, the code
that would be written in function definitions in
Racket must be written as methods of some
class.

Example: a Phone Directory

9COMP 311, Fall 2024

• Task: maintain a directory containing the
office address and phone number for each
person in the Rice Computer Science Dept.

• Each entry in such a directory has a natural
representation as an object with three fields
containing a person’s
• name

• address

• phone number

represented as character strings (no symbols
in Java).

Summary of Entry Format

10COMP 311, Fall 2024

• Fields:

• String name

• String address

• String phone

• Implicitly generated methods (in Functional

Language Level of DrJava):

• String name()

• String address()

• String phone()

Entry Demo in DrJava

11COMP 311, Fall 2024

• Create an object

• How do perform any

computation with it?

Java Method Invocation

12COMP 311, Fall 2024

• A Java method m is executed by sending a method

invocation (method call)
o.m()

to an object o, called the receiver. The method m must be

a member (perhaps inherited) of o. From a conventional

procedural or functional perspective, the receiver is the

primary argument passed in a method call. In the

machine implementation, the receiver is passed as the

first argument on the stack. Any remaining arguments

(the method parameters) immediately follow. So methods

are actually implemented in machine code as procedures.

• The code defining the method m can refer to the receiver

argument using the keyword this.

Method Invocation Demo

13COMP 311, Fall 2024

• Apply some auto-generated methods to

an Entry

• How do we build up expressions from

method invocations?

• Apply operators (built-in to Java)

• Invoke methods

Java Expressions

14COMP 311, Fall 2024

• Java supports essentially the same

expressions over primitive types (int,

float, double, boolean) as C/C++.

• Notable differences:

• boolean is a distinct type from int

• no unsigned version of integer types

• explicit long type

Defining (Instance) Methods

15COMP 311, Fall 2024

• Recall our definition of the Entry class.

How can we add methods to this class?

• Suppose we want Entry to support a

method:

boolean match(String keyname)

invoked by syntax like

e.match("Corky")

where e is an Entry.

Method Definition Demo

16COMP 311, Fall 2024

• Comment notation:

• // opens a line comment

• Block comments are enclosed in
/* … */

Code for Entry with match

17COMP 311, Fall 2024

class Entry {
/* fields */

String name, address, phone;

/** return true iff name matches keyName.*/

boolean match(String keyName) {

return keyName.equals(name));
}

}

Presumed Knowledge

18COMP 311, Fall 2024

Reading: OO Design Notes, Ch 1.

