
1

On to Java!

Corky Cartwright

Department of Computer Science

Rice University

COMP 311, Fall 2022 2

From Racket to Java
• Racket and Java look completely different

• Don't be fooled. Java is very Racket-like underneath (perhaps
excessively so).

• Self-identifying data (not present in C, C++)

• Implicit sharing of objects (discouraging mutation); assignment does
not copy!

• C++ and C# vs. Java?

• In the Rice curriculum, C++ and C# are little-used.

• In industry, Java is still dominant. The flexibility of open source is
more important than the first-class generics offered in C#. C++ still
used where performance is paramount, but it is costly.

• For phones, Swift which has much in common with Java except: (i) no
VM and (ii) a reference-counted heap.

• For high-performance, Rust? A type safe language with C like syntax
and support for traits rather than unrestricted inheritance (as in C++).

• DrRacket → DrJava

COMP 311, Fall 2022 3

Java Notation

Breezy Overview of Java
• Syntax is wordy and rather ugly. Lots of warts thanks

to C/C++ heritage. I presume everyone in this class
already knows how to program in Java (perhaps with
bad taste).

A functional programmers view of Java:
• What is a Java program? A collection of classes.

• What is a class? Rough answer: a Racket struct
declaration on steroids. Instead of writing functions
that manipulate structs, you add "methods" to a class
which are members of the class.

• All Java code belongs to some class.

COMP 311, Fall 2022 4

Guiding Vision

• Good program design in Java is data-directed.
Design the data abstractions first; they will
determine the structure of the code. In OOP
circles, this data design process is often called
object-modeling.

• Software development is incremental and test-
driven. Essentially the same design recipe is
used in OO and FP languages.

• Key to OO approach: common data and
programming abstractions are codified as design
patterns. Primary control structure is dynamic
dispatch.

COMP 311, Fall 2022 5

Secondary Theme: DrJava

• DrJava, our lightweight, reactive environment
for Java, was created specifically to foster
learning to program in Java.

• DrJava facilitates active learning; with DrJava
learning Java is a form of exploration.

• DrJava is not a toy; DrJava is developed using
DrJava. It includes everything that we believe
is important and nothing more.

COMP 311, Fall 2022 6

Remainder of Lecture is Review

• Chapter 1 of my OO Design Notes presents

an expository summary of core Java from a functional

point of view. Skim it except for sections that cover

aspects of Java program design that you have not

seen in detail before, e.g., the visitor pattern.

• Since I suspect nearly all of you have seen

essentially all of the Java material before, I am going

to breeze through it in lecture.

• Important take-away. Note how I use familiar Java

constructs in perhaps unfamiliar ways to support a

functional programming perspective.

COMP 311, Fall 2022 7

What Is an Object?

• Collection of fields bound to primitive values or

objects representing the properties of a

conceptual or physical object.

• Collection of operations called methods for

observing and changing the fields of the object.

Mutation is available, but should be used

sparingly. In a functional Java program, fields

are not mutated.

These fields and methods often called the

members of the object (Java parlance).

COMP 311, Fall 2022 8

How Are Objects Defined?

• All objects are created using templates
(cookie cutters) just like Racket structs.

• Instead of writing define-struct statements,
we write class definitions.

• Since all code is contained within a class,
class definitions tend to be much richer (and
more complex in real world examples) than
define-struct statements. After all, the code
that would be written in function definitions in
Racket must be written as methods of some
class.

COMP 311, Fall 2022 9

Example: a Phone Directory

• Task: maintain a directory containing the
office address and phone number for each
person in the Rice Computer Science Dept.

• Each entry in such a directory has a natural
representation as an object with three fields
containing a person’s
• name

• address

• phone number

represented as character strings (no symbols
in Java).

COMP 311, Fall 2022 10

Summary of Entry Format

• Fields:

• String name

• String address

• String phone

• Implicitly generated methods (in Functional

Language Level of DrJava):

• String name()

• String address()

• String phone()

COMP 311, Fall 2022 11

Entry Demo in DrJava

• Create an object

• How do perform any

computation with it?

COMP 311, Fall 2022 12

Java Method Invocation
• A Java method m is executed by sending a method

invocation (method call)

o.m()

to an object o, called the receiver. The method m must be

a member (perhaps inherited) of o. From a conventional

procedural or functional perspective, the receiver is the

primary argument passed in a method call. In the

machine implementation, the receiver is passed as the

first argument on the stack. Any remaining arguments

(the method parameters) immediately follow.

• The code defining the method m can refer to the receiver

argument using the keyword this.

COMP 311, Fall 2022 13

Method Invocation Demo

• Apply some auto-generated methods to

an Entry

• How do we build up expressions from

method invocations?

• Apply operators (built-in to Java)

• Invoke methods

COMP 311, Fall 2022 14

Java Expressions

• Java supports essentially the same

expressions over primitive types (int,

float, double, boolean) as C/C++.

• Notable differences:

• boolean is a distinct type from int

• no unsigned version of integer types

• explicit long type

COMP 311, Fall 2022 15

Defining (Instance) Methods

• Recall our definition of the Entry class.

How can we add methods to this class?

• Suppose we want Entry to support a

method:

boolean match(String keyname)

invoked by syntax like

e.match("Corky")

where e is an Entry.

COMP 311, Fall 2022 16

Method Definition Demo

• Comment notation:

• // opens a line comment

• Block comments are enclosed in
/* … */

COMP 311, Fall 2022 17

Code for Entry with match

class Entry {
/* fields */

String name, address, phone;

/** return true iff name matches keyName.*/

boolean match(String keyName) {

return keyName.equals(name));
}

}

COMP 311, Fall 2022 18

Presumed Knowledge

Reading: OO Design Notes, Ch 1.

