
1

Higher-Order Functional

Programming in Java

Corky Cartwright

Department of Computer Science

Rice University

COMP 311, Fall 2022 2

Partial Hoisting

• In a union hierarchy, the same code may be repeated

in some proper subset of the variants.

• We can eliminate this code duplication by introducing

a new abstract class that is a superclass only of the

variants that repeat the same code.

• Partial hoisting modifies the form of the class diagram

because it introduces a new abstract class below the

root (parent) abstract class of the union.

COMP 311, Fall 2022 3

Data Domain Definitions
• Functional programs typically manipulate algebraic data types (inductively defined trees). A

context free grammar where the right hand sides of productions denote trees rather than

strings is a good model (called a tree grammar). Regrettably tree grammars are not part of

the standard “theory” curriculum in undergraduate computer science.

• We use the composite pattern, the recursive generalization of the union pattern, to

represent algebraic data types (ignoring function values for the moment). The composite

pattern is simply a very important special case of the union pattern where one of more fields

in a variant (clause in the inductive definition) has the same type as the parent type,

providing a mechanism for constructing arbitrarily large data values.

• Each different form of value construction in the definition is typically a separate Java class;

hence a Java class plays roughly he same role as a Racket struct.,except that classes also

impose an inheritance hierarchy on the methods supported by the classes in a composite.

The parent type is typically an interface or abstract class. (Since Java 8, the methods in

interfaces can be concrete, so we presumably can always use interfaces.) The IntList

class hierarchy from the current homework assignment is a good example.

COMP 311, Fall 2022 4

The Interpreter Pattern

• To define a method m on a composite class, we follow the same

process as we would in defining a method on a union class, with one

new wrinkle. In the variants that refer to the composite class (have

fields of composite class type), computing m for embedded self

references will usually involve delegating the task of computing m to the

parent composite class which uses dynamic dispatch to determine what

code is executed. Dynamic dispatch corresponds to case-splitting as in

the Racket cond construct or pattern matching in the ML-languages.

• In the IntList code provided in the current homework, the only

embedded reference to IntList in variant subclasses is the rest field

in ConsIntList. In the interpreter pattern we recursively apply m to

fields of the parent class type.

• The Interpreter pattern is simply structural recursion in the context of

object-oriented data (the composite pattern).

COMP 311, Fall 2022 5

Example: IntLists

• An IntList is either:

• EmptyIntList(), the empty list, or

• ConsIntList(first,rest), a non-empty list, where first is an

int and rest is an IntList.

• Some examples include:

• EmptyIntList()

• ConsIntList(7,EmptyIntList())

• ConsIntList(12,ConsIntList(17,EmptyIntList()))

• Java notation for constructed objects is awkward. Every

explicit construction begins with the keyword new, e.g.,
new ConsIntList(12, new ConsIntList(17, new EmptyIntList()))

COMP 311, Fall 2022 6

IntList
abstract class IntList { }

class EmptyIntList extends IntList { }

class ConsIntList extends IntList {

private int first;

private IntList rest;

ConsIntList(int f, IntList r) {

first = f;

rest = r;

}

int first() { return first; }

IntList rest() { return rest; }

}

/** The code in brown appears in full (standard) Java code. It elided

* in Functional Java, which is weakly supported in DrJava. */

COMP 311, Fall 2022 7

Defining Methods on IntList

abstract class IntList {

abstract IntList sort() { }

}

class EmptyIntList extends IntList {

IntList sort() { ... }

}

class ConsIntList extends IntList {

private int first;

private IntList rest;

ConsIntList(int f, IntList r) {
first = f;
rest = r;

}

int first() { return first; }

IntList rest() { return rest; }

IntList sort() { ... }

}

COMP 311, Fall 2022 8

IntList sort cont.
abstract class IntList {

abstract IntList sort();

abstract IntList insert(int i);

}

class EmptyIntList extends IntList {

IntList sort() { return this; }

IntList insert(int i) { return new ConsIntList(i, this); }

}
class ConsIntList extends IntList {
private int first;

private IntList rest;
ConsIntList(int f, IntList r) {

first = f;
rest = r;

}

int first() { return first; }

IntList rest() { return rest; }

IntList sort() { return rest.insert(first); }
IntList insert(int i) {

if (i <= first) return new ConsIntList(i, this);
else return new ConsIntList(first, rest.insert(i));

}
}

COMP 311, Fall 2022 9

Four Important Idioms

Singleton Pattern

• 0-ary variants (no fields) typically have only one instance, e.g., the empty list.

Strategy Pattern

• Functions as data values can be represented by instances of anonymous
inner classes.

Visitor Pattern

• Encapsulate functions (closures) over a composite as separate objects so
new operations can be defined over a composite without modifying any
classes in the composite.

• Perhaps the most important idiom

Parametric Polymorphism (Generic types)

• Classes (and methods) can be parameterized by type

• Regrettably type parameters are not first-class; in many contexts, generic
types are either forbidden or ignored (with a warning message)

COMP 311, Fall 2022 10

Singleton Pattern

• In Java, a final method variable or field cannot be modified once it

is bound. Idea: bind a static final field to the sole instance of a

class and make the constructor private.

• Example: EmptyIntList

class EmptyIntList extends IntList {

static final EmptyIntList ONLY = new EmptyIntList();

private EmptyIntList() { }

IntList sort() { return this; }

IntList insert(int n) { return cons(n); }

}

• To refer to the empty list, write EmptyIntList.ONLY.

COMP 311, Fall 2022 11

Nesting Variation
Entire composite can be embedded in the root class (interface?).
abstract class IntList {

abstract public IntList sort();

abstract public IntList insert(int i);

public IntList cons(int i) { return new ConsIntList(i,this); }

public IntList empty = new EmptyIntList(

private static class EmptyIntList extends IntList {

public IntList sort() { return this; }

public IntList insert(int i) { return new ConsIntList(i, this); }

}
private static class ConsIntList extends IntList {
private int first;

private IntList rest;
ConsIntList(int f, IntList r) {
first = f;
rest = r;

}

public int first() { return first; }

public IntList rest() { return rest; }

public IntList sort() { return rest.insert(first); }
public IntList insert(int i) {
if (i <= first) return new ConsIntList(i, this);
else return new ConsIntList(first, rest.insert(i));

}
}

}

COMP 311, Fall 2022 12

Strategy Pattern

• In Java 1.1 (the first revised release of Java), inner
classes were added to the language. Static inner classes
are really simple as we demonstrated in the previous
coding example. They only change the visibility of raw
class names and constructors and add class name
prefixes (when visible) to the raw class; they have
semantics identical to ordinary top-level classes. The
interesting form of “inner class” is the “dynamic” inner
class where every instance of such a class has an
“enclosing instance”, which must be an instance of the
enclosing class. In nearly all common usage, the
enclosing class is the class of this (where the inner
class is defined).

COMP 311, Fall 2022 13

Strategy Pattern cont.

• What is a closure? The code for a lambda-abstraction plus an environment
specifying the values of the free variables.

• I think the inventor of Java inner classes, John Rose, a close friend of Guy
Steele when he was an MIT graduate student, designed inner classes as
the OO-analog of closures (the representation of a function value in a
language supporting functions as data). Hence, an anonymous inner class
is conceptually a closure like the closure representing an evaluated
lambda-abstraction.

• John’s original proposal allowed arbitrary references to free method
variables within anonymous inner classes, but this forced variables that
appear free in anonymous inner classes to have heavier-weight
implementations than ordinary method variables, so the Java standards
committee within Sun Microsystems decided to only allow free references
to final variables. Why? They can be copied as hidden fields in the
anonymous inner class object because they are immutable!

COMP 311, Fall 2022 14

Strategy Pattern cont.

• How do we represent a function as an anonymous inner class? We
introduce an interface (or abstract class) for the particular function type we
need. Stephen uses a library in Comp 310 with such interfaces
(parameterized by generic types which we will avoid for now). Say that we
want to represent a function from int to int. Then the interface

interface FunctionInt_Int {

public int apply(int x);

}

suffices.

• An anonymous inner class extends a type (typically an interface) filling in
any method that is not yet defined and optionally overriding methods that
are already defined. (I think fields are allowed also.) The code for the
method is simply the code to compute the desired function! The Java
compiler concocts a garbled name for the anonymous inner class and only
one instance is ever created (unless a programmer digs out the garbled
name …)

COMP 311, Fall 2022 15

Visitor Pattern
• Given a inductively defined type represented using the composite pattern, how can

we systematically define new operations over this type in OO style without modifying
each class in the composite pattern representation, which is exactly what the
interpreter pattern does.

• Let’s use IntList as our example. There are only two variants in the composite
representation: EmptyIntList and ConsIntList. How can we add new methods to
the IntList composite without modifying the abstract class IntList or the concrete
subclasses EmptyIntList and ConsIntList?

• We use two sneaky tricks:

• Add a method to the top level class or interface and to each variant subclass
called visit(<visitor>). Each concrete variant must define visit(<visitor>).

• Define a visitor interface IntListVisitor corresponding to IntList that
contains a forXXX(XXX host) method for each variant XXX.

• We put the code that we would have put in the definition of the new method in class
XXX using the interpreter pattern as the body of the method forXXX(XXX host) with
only one change: we replace all occurrence of this (both explicit and implied) by
host. The host passed to forXXX inside the visitor is s simply this which is the
composite object that is the conceptual receiver of the method call on the method
implemented by the visitor. This pattern is sneaky but becomes natural with usage.

COMP 311, Fall 2022 16

Visitor Pattern Example

/** IntList := EmptyIntList + ConsIntList(int, IntList) */

abstract class List<T> extends Object { // extends Object is implied if omitted

abstract public <R> R visit(ListVisitor<T,R> iv); // Visitor hook

public ConsList cons(int i) { return new ConsIntList(i, this); } // Adds i to the front of this.

public static EmptyList<T> empty() { return EmptyList<T>.ONLY; } // Returns the unique empty list.

}

class EmptyList<T> extends IntList { // Concrete empty list class

public static final EmptyList<T> ONLY = new EmptyList<T>(); // Singleton binding

private EmptyList<T>() { } // Single pattern private constructor

public <R> R visit(ListVisitor<R,T> v) { return v.forEmptyList<T>(this); } // Visitor hook */

}

class ConsList<T> extends List<T> { // Concrete non-empty list class

T first; // element field

List<T> rest; // rest field

ConsIntList(int f, List<T> r) { first = f; rest = r; } // Constructor for ConsList class

public T first() { return first; } // accessor for first

public List<T> rest() { return rest; } // accessor for rest

public <R> R visit(ListVisitor<T,R> v) { return v.forConsList(this); } // Visitor hook

}

// For intelligible notation, need to override public String toString() inhertited from Object

.

COMP 311, Fall 2022 17

Visitor Pattern Example cont
/** Visitor interface for the IntList type. */

interface ListVisitor<T,R> {

abstract R forEmptyList(EmptyList<T> host); // host replaces ꞋthisꞋ in Interpreter equivalent

abstract R forConsList(ConsList<T> host);

}

class LengthVisitor<T> implements ListVisitor<T,Integer> { // Visitor for length

public static final LengthVisitor<T> ONLY = new LengthVisitor<T>(); // singleton binding

private LengthVisitor<T>() { } // singleton constructor

public Object forEmptyList(EmptyList<T> el) { return 0; }

public Object forConsIntList(ConsList<T> cil) { return 1 + cil.rest().visit(this); }

}

Java Conventions:

1. Every top-level “public” class C is stored in a separate file named C.java.

2. Visible top-level classes are “public”, the only visibility we saw in Racket.

3. API top-level methods in Java are “public” and explicitly labeled as public, which is

recognized by the compiler and tools (like junit) which requires many classes and

methods to be labeled as public.

4. Empty package exceptions: the compiler relaxes it rules regarding “public” vs public in

the empty package.

COMP 311, Fall 2022 18

Generic (Parametric) Types

• Generic type parameters were added to Java 1.5 (relabeled as Java 5).

• Java generics are quirky because they were added after the Java Virtual
Machine (JVM) was created and standardized. The instruction set of the
JVM (called “bytecode”) was designed to support Java 1.0 and all Java
extensions since Java 1.0, including inner classes added in Java 1.1, are
compiled by javac into the original JVM instruction set (JVM bytecode)
which was designed prior to inner classes and generic types.

• The Java language committee at Sun Microsystems elected to use a
translation of Java generic types called “erasure” (to my dismay).

• The only trace of generic types from your source code is embedded in
the byte code as “annotations” (attributes ignored by the class loading
process). Each generic field or method has an attribute declaring its
generic type, so that Java source code with generics can be
incrementally compiled (one class at a time, almost) assuming the
compiled code (class files) for all references classes is available to the
compiler. It uses these attributes to perform generic type checking.

COMP 311, Fall 2022 19

Generic Types in Java Source Language

• Generic types can appear in most places where conventional types may
appear with notable exceptions identified below.

• Occurrences of type variables must correspond to binding occurrences (just
like local variables in Racket or Java). Binding occurrences are introduced in
class/interface headers and method preludes.

• Generic class syntax
•

modifiers class name <typeName1, ..., typeNamen> { . . . }

• Generic (polymorphic) method syntax

• modifiers <typeName1, ..., typeNamen> type methodName{ . . . }

• Simplification: typeNames may have upper bounds of form extends type

• Exceptions: The following operations are illegal when T is a type parameter
naked array types, e.g. T[]
new operations of naked type, e.g. new T()
casts to generic type (not just naked type variables)

COMP 311, Fall 2022 20

Pathologies of Java Generic Types

• The generic typing of arrays was built-in to Java 1.0 but array types were
the only generic types. The subtyping rules for arrays are inconsistent
with the rest of Java which Java supports by performing run-time checks
that ensure type safety (data is never misinterpreted).

• In Java, the subtyping relation on generic types based on the values of
type parameters is ugly.

COMP 311, Fall 2022 21

Using Generic (Parametric) Types

• For each composite data type we want a single visitor interface. To
define methods of arbitrary return type, we must use class type
parameters in the interface and method type parameters in the visit
method hooks.

• Generically typed generalization of IntList visitor example.

interface IntListVisitor<T> {

abstract T forEmptyIntList(EmptyIntList host);

abstract T forConsIntList(ConsIntList host);

}

class LengthVisitor implements IntListVisitor<Integer> {

public static final LengthVisitor ONLY = new LengthVisitor(); // singleton binding

private LengthVisitor() { } // singleton constructor

public Integer forEmptyIntList(EmptyIntList el) { return 0; }

public Integer forConsIntList(ConsIntList cil) { return 1 + cil.rest().visit(this); }

}

COMP 311, Fall 2020 22

Visitor Demo Motivating Generics

•

COMP 311, Fall 2022 23

Parametric Polymorphism cont.

• In 1997-1998, programming language researchers proposed several different
schemes for adding type parameterization (called “generic types” by the OOP
research community). Guy Steele and I proposed a rather elegant scheme to
support first-class generic types but it was rejected as too complex and a
scheme based on type erasure proposed by a group including Phil Wadler and
Martin Odersky won.

• I doubt that either Phil or Martin is very proud of what has ensued. Java type
parameters are erased from the byte code generated by the Java compiler (the
byte code has no provision for supporting parametric type information) so many
natural uses of parametric types are forbidden in Java. Nevertheless, there are
reasonable workarounds in many cases and stinky, passable workarounds in
others which enable most developers to hold their noses and get by.

• Scala managed to clean things up somewhat but even Scala is hobbled by its
compatibility with Java and its ugly generic type system. Martin Odersky was
interested in exploring the adaptation of the Cartwright-Steele proposal for
Scala but my planned sabbatical was derailed for personal reasons so Scala
and Java both live with crippled type systems.

COMP 311, Fall 2022 24

Parametric Polymorphism cont.

• The javac compiler enforces generic typing where generic types must
match exactly (except for types with wildcards), but the compiler allows that
system to be breached in various ways via annotations and “raw” types. I
think newer versions of Java have partially plugged some holes but Java
will never be a language with a rigorous type discipline in practice. There
are many situations where cheating on type-checking yields far more
elegant implementations.

• Fundamental limitation: no typable code can rely on run-time type
information that is not revealed by control flow and even some of this
information (e.g., the results of instanceof tests) is not available.

• Examples of operations that are forbidden where T is type parameter

• new T(…), new T[], (T) <expr>, (<generic type>) <expr>

• To escape these restrictions, the parameterized types of objects must be
discoverable at run-time, which the Cartwright-Steele proposal supported
at essentially no run-time overhead cost.

COMP 311, Fall 2022 25

Working Around Type Erasure

• Best approach: use an intuitive understanding of parameterized types (a la

our Racket annotations) and back off (weakening your types and relying on

occasional casts) when flagged for type errors reported by the compiler.

• Most important trick: use ArrayList<T> when you might want T[]. An

ArrayList is simply an object wrapping (a pointer to) an array, which can

be dynamically resized (unlike an array).

• Wildcard types (generic types with ? used as a parametric type) are really

ugly and hard to work worth; I would avoid them if possible. They are

designed to accommodate subtyping at the level of generic type variables,

e.g. ArrayList<Integer> is a subtype of ArrayList<Number>. In most

cases, the extra work to get the wildcard types is signficant and

complicates potential refactoring. It may be better to simply live with

weaker typing. (Potential exception: widely used libraries. But usage is

more difficult.)

