
1

Strategy Pattern:

Encoding Functions As Data Values

Corky Cartwright

Department of Computer Science

Rice University

COMP 311, Fall 2022 2

Supporting First-class Functions in Java

• Java methods are not data values; they cannot be used as
values. (Java 8 introduces method references which are
abbreviations for Java lambda-abstractions, also introduced in
Java 8. These extensions of Java are syntactic sugar for the
inner class encodings we are going to discuss; they may be
useful. I don’t have enough experience with the notation to
have an definitive opinion.)

• Since java classes include methods, we can effectively pass
methods (functions) by passing an appropriate class singleton
implementing an interface type that is designed exclusively to
represent Java functions.

• We need to design an interface corresponding to a function of
type

A1 A2 …. An → R

• Stay tuned …

COMP 311, Fall 2022 3

Interfaces for Function Types

Given the function type A1 A2 … An → R,

what is a corresponding interface the Java encoding?

interface ILambdaN<A1,A2,...,An, R> {

R apply(A1 x1, A2 x2, ..., An xn);

}

Note: if you do not need multiple instantiations of ILambdaN in your program, you can
drop the generic type parameters as appropriate.

Let’s add the method map (for unary functions) to out generic functional List class using

the interpreter pattern. (Why not visitor pattern?)

• In List<E>
abstract <R> List<R> map(ILambda<E,R> f);

• In Empty<E>

<R> List<R> map(ILambda<E,R> f) { return new EmptyList<E>(); }

• In Cons<E>
<R> List<R> map(ILambda<E,R> f) {

return rest.map(f).cons(f.apply(first));
}

COMP 311, Fall 2022 4

Representing Specific Functions

• For each function that we want to use a value, we must define a class,
preferably a singleton. Since the class has no fields, all instances are
effectively identical.

• Defining a class seems unduly heavyweight, but it works in principle.

• Java provides a lightweight notation for singleton classes called
anonymous classes. Moreover these classes can refer to fields and
final method variables that are in scope. In the DrJava Function
Language, all variables are final. final fields and method variables
cannot be rebound to a new value after they are initially defined, i.e.,
they are immutable.

• Anonymous class notation:

new <type>() {
<member1>
...
<membern>

}

COMP 311, Fall 2022 5

Anonymous Class Example

The following anonymous class defines the common “drop” operation in the context of a

composite class hierarchy for the generic root class List<T>

new ILambda1<T, List<T>>() {

apply(T arg) {
return new EmptyList<T>().cons(arg);

}

}

Beware that List<T> refers to our generic functional list class, not java.util.List<T>.

Java 8 introduced more concise notation for lambda abstractions:

T arg -> new EmptyList<T>().cons(arg);

which I almost never use because I internalized the explicit representation using

anonymous classes decades ago. Moreover, the newer notation has a serious flaw; the

keyword this means the enclosing class instance rather than the anonymous class,

preventing simple recursion. The notation for anonymous classes gets it right!

COMP 311, Fall 2022 6

Example
• An anonymous class denoting the factorial function:

new ILambda1<Integer, Integer>() {

apply(Integer n) {

if (n <= 1) return 1;

return n * apply(n - 1);

}

}

• Note that the call apply(n - 1) implicitly uses this which refers to the
anonymous class instance NOT the enclosing instance. Unfortunately,
there is no equivalent expression using the new “lambda” notation.
Regrettably, the Oracle committee controlling the evolution of Java
believes

Consistency is the hobgoblin of little minds ...

• Erasure-based generics are so brittle that I often write code that is correct
for first-class generics (where type parameters have the same status as
conventional types) and subsequently address any problems (violations of
erasure-based restrictions) reported by the compiler.

COMP 311, Fall 2022 7

Loose Ends: Exceptions

• In Java, error values are called exceptions. Exceptions are
conventional objects and hence are created by expressions of the form
new <exception-class>(<arg1>, ..., <argn>).

• The Java libraries include on the order of 100 different exception
classes signifying different forms of error. The all inherit from the class
Exception. Moreover, the most useful and convenient form of
exception is a subclass of Exception called RuntimeException. All of
the exceptions that we will use will belong to type (subclasses of)
RuntimeException except some choices already dictated in the
libraries. The only defensible use of “checked” exceptions is for explicit
exception-based control (which I dislike because it smells bad in OO
designs).

• Some of the important exception classes are:

NullPointerException
ClassCastException
IllegalArgumentException
java.util.NoSuchArgumentException

COMP 311, Fall 2022 8

Loose Ends: Exceptions cont.

• To explicitly raise an exception in Java code, you simply
throw it using the syntax

throw <except-expr>

where <except-expr> is a an expression (typically a new

expression) denoting an exception.

• Examples:
throw new IllegalArgumentException("max applied to an empty list")

throw new java.util.NoSuchElementException("max applied to an empty list")

COMP 311, Fall 2022 9

Loose Ends: Casts
• The Java static type system uses simple rules to infer types for

Java expressions.

• The inferred type for an expression is conservative; it is guaranteed
to be correct, but it may be weaker than what is required for a
particular computation. As a result, Java supports type coercions
called casts of the form
(<type>) <expr>

that simply convert the type of <expr> to <type> for type-
checking purposes. If the value of <expr> does not have type
<type>, the computation throws a ClassCastException. The
type information from a cast is purely local, it does not affect the
inferred type of subsequent occurrences of <expr>. As a result,
Java code must repeatedly cast such expressions to narrower type
or introduce a new variable of the narrower type bound to the value
of <expr>.

• Example: recall the insertion sort example we studied in Racket.
We can easily do the same in Java.

COMP 311, Fall 2022 10

Casting: A Final Comment

• The Java compiler disallows casts
(<type>) <expr>

where <type> is an object (reference)
type and the static type of <expr> and
<type> do not overlap (ignoring null).

COMP 311, Fall 2022 11

Example InsertSort (part 1)

abstract class List<T extends Comparable<T>> {

EmptyList<T> empty() { return new EmptyList<T>(); }

ConsList<T> cons(T n) { return new ConsList<T>(n, this); }

abstract List<T> insert(T t);

abstract List<T> insertSort();

/* [inherited] public boolean equals(Object other) must be overridden */

/** A help function to support overriding toString() to produce a Lisp-like
representation for List<T> */

abstract String toStringHelp();

}

final class EmptyList<T extends Comparable<T>> extends List<T> {

EmptyList() { }

public boolean equals(Object other) { return other instanceof EmptyList; }

List<T> insert(T t) { return this.cons(t); }

List<T> insertSort() { return this; }

public String toString() { return "()"; } // must be public to match
declaration in Object

String toStringHelp() { return ")"; }

}

COMP 311, Fall 2022 12

Example InsertSort (part 2)

final class ConsList<T extends Comparable<T>> extends List<T> {

T first;

List<T> rest;

T first() { return first; }

List<T> rest() { return rest; }

ConsList(T f, List<T> r) { first = f; rest = r; }

public boolean equals(Object other) { // must be public to match declaration
in Object

if (! (other instanceof ConsList)) return false;

ConsList o = (ConsList) other;

return first.equals(o.first()) && rest.equals(o.rest());

}

List<T> insert(T t) {

if (t.compareTo(first) <= 0) return this.cons(t);

return rest.insert(t).cons(first);

}

List<T> insertSort() { return rest.insertSort().insert(first); }

public String toString() { return "(" + first + rest.toStringHelp(); }

String toStringHelp() { return " " + first + rest.toStringHelp(); }

}

