
1

Racket Primitives and Function Definitions

Robert “Corky” Cartwright

Department of Computer Science

Rice University

COMP 311, Fall 2022 2

Today’s Goals

• Common basic types

• Common primitive operations

• Rules for reducing programs

• Simple program =
Variable definitions + Function definitions + Expression

• The design recipe

• Errors

• Data definitions

COMP 311, Fall 2022 3

Basic (primitive) types of data

Numbers:

• naturals: 0, 1, 2, … // number theory in mathematics

• integers: …, -1, 0, 1, … // include negatives

• rational numbers: 3/4, 0, -1/3, … // include fractions

• inexact numbers: #i0.123, #i0, … // floating point numbers

• primitive operations: +, -, *, /, expt, remainder, sqrt

Racket computes exact answers on exact inputs when possible

Booleans: #false, #true // true #true false #false

operations: not, and, or

Symbols: ‘A, ‘a, ‘Aa, ‘Corky, … // prefix quote marks: Racket!

operations: // none important for now

Other basic types: // none important for now

COMP 311, Fall 2021 4

Mixed-type Operations and Basic Computation

• Basic relational operators

• equal? // well-defined for all data values

• =, <, >, <=, >= // well-defined only on numbers (other values generate

// runtime errors

• Primitive computation = application of a basic operation to constants

• Basic operation = basic function (if not classified as basic function)

• Soon, we will see how to define our own functions

• Function application in Racket: parenthesized prefix notation

• Scheme uses parenthesized prefix notation uniformly for everything

• (+ 2 2), (sqrt 25), (remainder 7 3)

• Bigger example: (* (+ 1 2) (+ 3 4))

• How does this compare to writing 1+2*3+4 (common math notation)?

• Racket syntax is simple, uniform, and avoids possible ambiguity

COMP 311, Fall 2021 5

Computation is repeated reduction

• Every Racket program execution is the evaluation of

a given expression constructed from primitive or

defined functions and variables (constants).

• Evaluation proceeds by repeatedly performing the

leftmost possible reduction (simplification) until the

resulting expression is a value.

• A value is the canonical textual representation of any

constant (ignoring functions and lazy lists). We will

identify all of the expressions that are values as we

explicate the language. All basic Racket constants

including numbers, booleans, symbols are values.

• A reduction is an atomic computational step that replaces some expression by a
simpler expression as specified by a Racket evaluation rule (law). Every
application of a basic operation to values yields a value (where a run-time error is
a special kind of value that aborts a computation).

• Example reduction of expression built from basic functions
(* (+ 1 2) (+ 3 4))

=> (* 3 (+ 3 4))
=> (* 3 7)
=> 21

• Racket computation always performs leftmost reduction. If leftmost potential

reduction is ill-formed, Racket aborts reporting an error.

• The following is not an atomic step, and so not a reduction
(- (+ 1 3) (+ 1 3)) = 0

It is a pair in the transitive closure of the reduction relation (every value reduces to
itself!) It is not a valid reduction step because the operand expressions are not
values.

• All the rules for reducing the applications of primitive functions (excluding if)
require values as operands.

COMP 311, Fall 2021 6

Reduction for basic functions

COMP 311, Fall 2021 7

Programs = Variable Definitions + Function Definitions

• Variables are simply names for values; a few like true are predefined

• pi, my-SSN, album-name, tax-rate, x

• Variable definitions
• (define freezing 32)
• (define boiling 212)

• Function definitions
• (define (area-of-box x) (* x x))
• (define (half x) (/ x 2))

• Function applications (just as we saw before)
• (area-of-box 2)
• (half (area-of-box 3))

• Almost any function f used in a program can be written in the form
• (define (f v1 … vn) <expression>)

where <expression> is constructed from constants, variables, basic
function applications, and the applications of a few other non-basic but
primitive functions that will be covered in next lecture.

COMP 311, Fall 2021 8

Reductions for defined functions

• Assume we defined the two functions
(define (area-of-box x) (* x x))

(define (half x) (/ x 2))

• Then Racket can perform these reductions
(half (area-of-box 3))

=> (half (* 3 3))

=> (half 9)

=> (/ 9 2)

=> 4.5

• Reduction stops when we get to a value or an error

COMP 311, Fall 2021 9

The Design Recipe

How should we go about writing programs?

1. Analyze problem and define any requisite data types; show

examples for each type.

2. State type contract and behavioral contract [purpose] for all

function(s) in the problem solution.

3. Give examples of function use and result.

4. Select and instantiate a template for the function body; many

are degenerate. Data type of primary argument determines

the template.

5. Write the function itself by filling in the template instantiation.

6. Test it, and confirm that tests succeeded.

The ordering of the steps of the recipe is important.

COMP 311, Fall 2021 10

Example: Solve quadratic equation
;; Type Contract: solve-quadratic: number number number -> number Step 2

;; Behavioral Contract: (solve-quadratic a b c) finds the larger root of

;; a*x*x + b*x + c = 0 given it has real roots and a != 0

;; Examples: (solve-quadratic 1 0 -25) = 5 Step 3

;; (solve-quadratic 5 0 -20) = 2

;; (solve-quadratic 1 -10 25) = 5

;; . . . and other examples

;; Template instantiation: (degenerate) Step 4

;; (define (solve-quadratic a b c) ...)

;; Code Step 5

(define (solve-quadratic a b c)

(/ (+ (- b) (sqrt (- (* b b) (* 4 a c)))) (* 2 a)))

;; Tests for solve-quadratic Step 6

(check-expect (solve-quadratic 1 0 -25) 5)

(check-expect (solve-quadratic 5 0 -20) 2)

(check-expect (solve-quadratic 1 -10 25) 5)

COMP 311, Fall 2021 11

The Design Recipe (Big Picture)

• Encourages systematic problem solving

• Works best if keep our functions small

• We will learn how to repeatedly decompose
problems into simpler problems until we
reach problems that can be solved by simple
expressions as in solve-quadratic

• Decomposition driven by structure of data
being processed: data-directed design

COMP 311, Fall 2020 12

Syntax Errors

• A syntactically correct expression can be

• An atomic expression, like

• a number 17, 4.5, #i0.34

• a variable radius

• A compound expression,

• starting with (

• followed by primitive or program-defined operation such as + or -

• one or more expressions separated by spaces (the operands)

• ending with)

• Syntax errors:

• 3) , (3 + 4) , (+ 3 ,)+(, …

• Compound expressions:

• (+ 3 4) , (not x)

COMP 311, Fall 2020 13

Runtime Errors

• Happen when basic operations are applied to manifestly

illegal arguments

• Consider the following examples in Racket:
• (sqrt 1 2 3 4) => sqrt: expects only 1 argument, but found 4

• (/ 1 0) => /: division by zero

• (+ 1 ‘a) => +: expects a number as 2nd argument, given 'a

Racket prints error results in red. In hand evaluations (perhaps created using an editor) you can

write use the prefix ERROR instead, e.g.,

• (/ 1 0) => ERROR /: division by zero

Your manually generated description of the error does not have to match Racket exactly: a

paraphrase such as the following is fine:

(sqrt 1 2 3 4) => ERROR: wrong number of arguments to sqrt

• Try examples in DrRacket

COMP 311, Fall 2021 14

Reminders
• New homework (on GitHub and GitHub Classroom) is posted online

• Due next Th Sept 3, easy for students who have previously used GitHub Classroom.

• Play with DrRacket

• Extra credit exercise (+ 10pts):

The expt (exponentiation) operation is basic but try defining your own implementation

called exp that works only on natural numbers. Don’t worry about templates or template

instantiation.

• Write a simple brute force definition for exp that is a good mathematical definition but

slow when executed.

• Write an efficient definition named fast-exp based on the binary representation of

the exponent.

• You obviously need to use recursion for both parts. Follow the design recipe but you

should omit an inductive definition of the natural numbers and the template

instantiation for fast-exp, which does not use simple structural recursion.

• Send your Racket file that is a solution by email to cork@rice.edu by 11:59pm on Wed

Sept 8.

mailto:cork@rice.edu

COMP 311, Fall 2021 15

Epilog
• Reference: chs. 1-10 in HTDP

Sections 8.3 and 9.4 are particularly important and they

are not wordy.

• Next class (read about them first; we will use them in

HW1)

• Most important primitive form of data: lists

• Data definitions including self-reference (recursive data

definitions)

• Conditionals

• Amplified design recipe supporting function definitions that use

recursion

