
1

Data-directed Design

Corky Cartwright

Department of Computer Science

Rice University

COMP 311, Fall 2023 2

Review: Parametric Data Definitions

Parametric Type Definition (akin to Java Generics)
A (list-of alpha) is either:

• empty, or

• (cons a lon)

• where alpha is any type, a is element of alpha, and lon is a
(list-of alpha).

As we stated before, the domain of list values is built-in to Racket, as

well as many functions like cons, cons?, empty?, list?, first, and rest. In

adddition, Racket includes an extensive library of functions that

manipulate lists including length, reverse, and append. Racket only

supports struct definitions which do not include any type restrictions on
operands when building new values. Recall that our type definitions are
simply comments providing documentation.

COMP 311, Fall 2023 3

Template for (list-of alpha)

;; (define (f ... a-list ...)

;; (cond

;; [(empty? a-list) ...]

;; [(cons? a-list) ... (first a-list) ...

;; ... (f ... (rest a-list) ...) ...]))

Note that the template does not depend on the element type alpha.

It applies t(list-of alpha) where alpha is any type.

COMP 311, Fall 2023 4

Plan for Today

• List abbreviations

• More discussion of the list template

• Data-directed design with numbers

• Strong structural recursion

• Another ubiquitous self-referential data

type: trees

COMP 311, Fall 2023 5

List Abbreviations

• Let c1, c2, …, cn be constants (including quoted symbols).

(list c1 c2 ... cn) abbreviates
(cons c1 (cons c2 ... (cons cn empty))...)

• Let s1, s2, …, sn be symbols , constants (excluding symbols) or lists
constructed of such atoms.

• '(s1 ... sn) abbreviates (list 's1 ... 'sn)

• Examples (all equal)

'((1 2) (3 four))

(list (list 1 2) (list 3 'four))
(cons (cons 1 (cons 2 empty)) (cons (cons 3 (cons ‘four empty)) empty))

• Do not nest quoted notation; it won’t work.

• Do not use true, false, empty inside quotation; there are symbols
'true, 'false, 'empty that are distinct from true, false, empty.

COMP 311, Fall 2023 6

A simple list function that takes 2 list arguments

• The append function that concatenates lists is
built-in to Racket. We will define this function

; app: (list-of alpha) (list-of-alpha -> list-of-alpha)
; contract: (app a b) concatenates the lists a and b.

; Examples
(check-expect (app '(a b) '(c d)) '(a b c d))
(check-expect (app empty '(c d)) '(c d))
(check-expect (app '(a b) empty) = '(a b)

; Template Instantiation (on which argument do we recur?)
|#
(define (app x y)
(cond [(empty? x) ...]

[(cons? x) ... (first x) ...
(app (rest x) y) ...]))

#|

COMP 311, Fall 2023 7

app cont.

• ; Code:
(define (app x y)
(cond [(empty? x) y]

[(cons? x) (cons (first x) (app (rest x) y)]))

; Test? Already done!

• Would recurring on the second argument work?

COMP 311, Fall 2023 8

Using append as an auxiliary function

• append is included in the Racket library

• akin to concatenation, which is the common

string (a form of list of char) “construction”

operation

• Problem: cost of operation is not constant; it is

proportional to size of first argument (or, in case

of strings, size of constructed list)

• Example of function that when simply coded

uses append to construct its result: flatten

COMP 311, Fall 2023 9

Defining Deep Lists and flatten

;; A deep-list is either:

;; * empty, or

;; * (cons s adl) where a is a symbol or a deep-list and adl is a deep-list

;; Examples

(define dl1 '((())))

(define dl2 '((a) ((b))))

(define dl3 '((a b c d (e)) ((f) ((g)))))

;;

;; Template for deep-list

#|

(define (f ... dl ...)

(cond [(empty? dl) ...]

[(cons? d1)

(cond [(symbol? (first dl)) ... (first dl) ... (flatten (rest dl)) ...)]

[(empty? (first dl)) ... (flatten (rest dl)) ...]

[(cons? (first dl)) ... (flatten (first dl)) ... (flatten (rest dl)) ...])]))

|#

;; flatten: deep-list -> (list-of symbol)

;; Contract: (flatten dl) consumes a deep-list dl and concatenates all of

;; the symbols embedded in dl into a symbol-list where the symbols appear

;; in the same order as when dl is printed as string.

;; input to form a list of elements

COMP 311, Fall 2023 10

Defining Deep Lists and flatten (cont.)

;; Examples:

(check-expect (flatten dl1) empty)

(check-expect (flatten dl2) '(a b))

(check-expect (flatten dl3) '(a b c d e f g))

;; Template Instantiation for flatten:

#|

(define (flatten dl)

(cond [(empty? dl) ...]

[(cons? d1)

(cond [(symbol? (first dl)) ... (first dl) ... (flatten (rest dl)))]

[(empty? (first dl)) ... (flatten (rest dl)) ...]

[(cons? (first dl)) ... (flatten (first dl)) ... (flatten (rest dl)) ...])]))

|#

;; Code:

(define (flatten dl)

(cond [(empty? dl) empty]

[(cons? d1)

(cond [(symbol? (first dl)) (cons (first dl) (flatten (rest dl)))]

[(empty? (first dl)) (flatten (rest dl))]

[(cons? (first dl)) (append (flatten (first dl)) (flatten (rest dl)))])]))

COMP 311, Fall 2023 11

Defining flatten
;; Tests Done!

Improving flatten? Need a help function with an accumulator;
next lecture. We can avoid using append.

COMP 311, Fall 2023 12

Algebraic Data I

Given a set of constructor symbols C (with associated arities > 0) and a set of

primitive data values P, the domain of values generated by C and P is inductively

defined as follows:

1. Every primitive value p  P is a value; and

2. For every constructor c  C of arity n, and values v1, …, vn,

c(v1, …, vn) is a value.

If P is the set of primitive values of basic Racket (which excludes strings,

functions, vectors [arrays], and other more complex built-in forms of data) and C

is the set of primitive constructors (only cons) plus the constructors defined in a

Racket program P, the domain of value available in P is simply the set of values

generated by C and P. In this domain, every data value has the form p  P or

c(e1, e2, … en) where c C with arity n and e1, e2, … en are data values.

Observation From this perspective, every value in a Racket program is a tree.

Recall that we are not yet including functions as data values.

COMP 311, Fall 2023 13

Algebraic Data I (cont)

Freely generated algebras are part of a branch of mathematics called universal

algebra. A data value is any expression of the form cj(e1, e2, … en) where cj

C and e1, e2, … en are expressions denoting elements of the algebra. Given a

set of type symbols T, an algebraic type definition  consists of a finite set T of

type symbols T1, …, Tk  T defined by type equations:

T1 = 1, . . ., Tk = k

where each phrase i is a union of constructions [data values] cj(Tj,1, Tj,2, …

Tj,nj
) where each symbol Tj,I T and the constructors cj in i are distinct within .

The last restriction is pragmatic: it ensures that each type expression of the

form cj(Tj,1, Tj,2, …, Tj,nj
) in a type definition  denotes a disjoint subset of the set

V of all possible value constructions and that each element of type Ti belongs

to a unique component cj(Tj,1, Tj,2, … Tj,nj
) of I, facilitating the efficient matching

of any element of Ti against the components of of I. Languages in the ML

family enforce these restrictions to ensure the type of every program

expression can be inferred

COMP 311, Fall 2023 14

Algebraic Data II

• Note that we have explicitly excluded functions from P. Why?

• In a typical functional program, the value domain V includes an

enormous amount of “junk” because no restrictions are placed on

the value arguments v1, v2, … vn in a construction c(v1, v2, …, vn).

• The ML family of languages, including Haskell, follows a different

conceptual path (as desribed in the preceding slide), imposing

type restrictions on the operands of constructions and functions

• Every (mono)type is disjoint from every other (mono)type.

• Every value belongs to a unique monotype.

Haskell has added some interesting workarounds to support a form

of subtyping.

COMP 311, Fall 2023 15

Algebraic Data Types I

In the documentation framework that we use for Racket, we introduce type definitions

for the purpose of precise program documentation. Note that our types are subsets of
the program domain of values V that can overlap (as in Java). The framework is not

designed to support static type checking.

A type definition in a program P has the form

T := S1 | S2 | … | Sn

where

• T is a new name (identifier);

• each Si is either

• a recursive subset of P,

• a type T defined elsewhere in the program

• an expression c(T1, …, Tk) denoting the set { c(v1, …, vk) | vi Ti } where c is a

defined constructor (possibly primitive) and Ti is defined elsewhere in the program.

The sets Si must be disjoint.

We often write these definitions out in prose rather than using the := notation.

There is an obvious structural induction scheme for reasoning about an algebraic type.

COMP 311, Fall 2023 16

Algebraic Data Types II

Our data definition framework is very expressive. Essentially any data domain consisting of

freely constructed finite trees can be formulated as algebraic data. Some examples include:

• Files on your computer (at least in Linux)

• Simple File (an array of characters), or

• Folder, which contains a list of pairs (string, file)

• XML

• Baroque format for representing algebraic data as ASCII text

• Internet domain names

• Structurally well-formed programs (abstract syntax)

In some cases, the domain of interest must be embedded in a larger “freely constructed

domain”. For example, the domain of ascending integer-lists must be embedded in a larger

domain such as all integer-lists. The former is not an algebraic type but the latter is.

On the other hand, some forms of data are best characterized as quotients of algebraic types. I

am not aware of a mainstream functional language that directly supports data definitions that

construct quotients of algebraic types. In contrast, this form of data definition is easily done in

many class-based OO languages.

COMP 311, Fall 2023 17

Inductive Structure of N

• Standard definition from mathematics

;; A natural (natural number) is either

;; 0, or

;; (add1 n)

;; where n is a natural-number (natural)

• We often use the symbol N to denote this domain.

• In mathematics, add1 is usually called succ, suc, or S, for successor.
The deduction rule for mathematical induction on the natural numbers
embodies the preceding definition:

P(0), x [P(x) → P(add1(x))]
—————————————-

x P(x)

• Is there an analogous induction principle for other forms of inductively

defined data? Yes! For all inductively defined domains, there are

analogous natural deduction proof rules

COMP 311, Fall 2023 18

Basic Operations on Naturals

• Examples (using constructors)
• Zero: 0

• One: (add1 0)

• Four: (add1 (add1 (add1 (add1 0))))

• Accessors:
• sub1 : N -> N

Note: sub1 is typically called pred or P in mathematical logic; in

Racket (sub1 0) is not an error (for reasons explained later).

• Recognizers:
• zero? : Any -> bool

• positive? : Any -> bool ;; why not add1?

COMP 311, Fall 2023 19

Basic Laws (Reductions) for Natural Numbers

• The rules for primitive or auto-generated (for define-struct)
operation for a (typically infinite) table

• Recall the ones for lists:
• For all values v, and list values l, we have

• (empty? empty) = true ;; recognizer
• (empty? (cons v l)) = false

• (rest (cons v l)) = l ;; accessor
• (first (cons v l)) = v

• Basic laws:
• For all natural numbers n, we have

• (zero? 0) = true ;; recognizer
• (zero? (add1 n)) = false

• (positive? (add1 n)) = true

• (positive? 0) = false

• (sub1 (add1 n)) = n ;; accessor

• Similar rules exist for all inductively-defined data types

• What about laws for (equal? ...)

COMP 211, Spring 2023 20

Natural Numbers: Template

• Template for the natural data type is very similar to

lists:

;; f : natural -> ...

;; (define (f ... n ...)

;; (cond [(zero? n) ...]

;; [(positive? n)

;; ...(f ... (sub1 n)) ...]))

COMP 211, Spring 2023 21

Example

• Write a function that repeats a symbol s several (n) times

• Examples:

(repeat 'Rabbit 0) = empty

(repeat 'Rabbit (add1 (add1 0))) = '(Rabbit Rabbit)

• Code: (omitting [behavioral] contract function template for repeat)

;; repeat : symbol natural -> symbol-list

(define (repeat s n)

(cond [(zero? n) empty]

[else (cons s (repeat s (sub1 n)))]))

COMP 311, Fall 2023 22

Generalization: Full Structural Recursion

• Corresponds to “strong induction” on natural numbers

P(0), n [n′ < n P(n′)] → P(S(n))]

———————————————

n P(n)

• Template instantiation includes recursive calls on

deeper “predecessors” than the immediate ones; the

instantiation must anticipate what predecessors are

required.

COMP 211, Spring 2009 23

Example of Full Structural Recursion

;; fib: natural -> natural

;; Template instantiation for fib

;;(define (fib n)

;; (cond [(< n 2) ...]

;; [(positive? n) ... (fib (- n 1))

;; ... (fib (- n 2)) ...)]))

;;)

;; Code:

;; Some definitions of the Fibonacci sequence start 0, 1, ...

(define (fib n)

(cond [(< n 2) 1]

[(positive? N) (+ (fib (- n 1)) (fib (- n 2)))]))

COMP 311, Fall 2023 24

Defining Add

(define (add m n)

(cond

[(zero? m) n]

[(positive? m) (add1 (add (sub1 m) n))]))

(define (right-add m n)

(cond

[(zero? n) m]

[(positive? n) (add1 (right-add m (sub1 n)))]))

COMP 311, Fall 2023 25

Defining Integers

• An integer is either:

• 0; or

• (add1 n) where n has the form 0 or (add1 ...) [... non-negative]; or

• (sub1 n) where n has the form 0 or (sub1 ...) [... non-positive].

• Recognizers:

• zero?: any -> bool

• positive?: any -> bool

• negative?: any -> bool

• In Racket, add1 and sub1 have been extended to all integers by

defining for all integers n :

• (add1 (sub1 n)) = n

• (sub1 (add1 n)) = n

• Hence, (add1 -1) and (sub1 0) are not errors.

COMP 311, Fall 2023 26

Another Inductive Type: Trees
• (Natural number) Labeled trees

• Organizational charts

• Decision trees

• Search trees

and many more!

COMP 311, Fall 2023 27

From Lists to Trees
Example of a List Data Definition (very familiar)

;; Given the built-in two argument constructor cons with

;; fields first and rest:

;; An (list-of alpha) is

;; * empty, or

;; * (cons s los)

;; where s is an alpha and los is a alpha-list

Example of a Tree Data Definition

;; Given the struct definition

(define-struct person (name mother father))

; An ancestryTree is

; * empty (representing “unknown origin” or “none”)

; * (make-person n m f) (with two self-references)

; where n is a symbol, m is a person and f is a person

; A person is:

; * (make-person n m f)

; where n is a symbol, m is a person and f is a person

COMP 211, Spring 2023 28

Examples of ancestryTree

(make-person 'Bob

(make-person 'Jane empty

(make-person 'Tom

(make-person 'Cat empty empty) empty))

(make-person ’Rob empty

(make-person ’Sue empty

(make-person 'Ray empty

(make-person ’Johny empty empty)))))

COMP 211, Spring 2009 29

Template for ancestryTree

• In non-empty trees, we anticipate accessing each child

of the tree:

; f : ancestryTree -> ...

; (define (f ... at ...)

; (cond

; [(empty? at) ...]

; [else ... (person-name at) ...

; ... (person-mother c) ...

; ... (person-father c) ...]))

COMP 211, Spring 2009 30

Template for ancestryTree

Recursion in type → recursion in template

; f : person -> ...

; (define (f ... c ...)

; (cond

; [(empty? c) ...]

; [else ... (person-name c) ...

; ... (f (person-mother c)) ...

; ... (f (person-father c)) ...]))

COMP 211, Spring 2009 31

Example: Tree Depth

• Consider the following problem

• Given an ancestry tree, compute the maximum

number of generations for which we know

something about this person.

• Type (contract): person -> natural

• (Behavioral) Contract: ...

• Examples (next slide)

• Template?

COMP 311, Fall 2023 32

Tree Depth Examples

(define cat (make-person 'Cat empty empty))

(define tom (make-person 'Tom cat empty))

(define jane (make-person empty tom))

(define johnny (make-person 'Johnny empty empty))

(define ray (make-person 'Ray empty johnny))

(define sue (make-person 'Sue empty ray))

(define rob (make-person 'Rob empty sue))

(define bob (make-person 'Bob jane rob))

(check-expect (max-depth cat) 1)

(check-expect (max-depth tom) 2)

(check-expect (max-depth jane) 3)

(check-expect (max-depth johnny) 1)

(check-expect (max-depth ray) 2)

(check-expect (max-depth sue) 3)

(check-expect (max-depth rob) 4)

(check-expect (max-depth bob) 5)

COMP 311, Fall 2023 33

Tree Depth Template Instantiation

;; max-depth : ancestryTree -> natural

;; (define (max-depth c)

;; (cond

;; [(empty? c) ...]

;; [else ...

;; ... (max-depth (person-mother c)) ...

;; ... (max-depth (person-father c)) ...]))

COMP 211, Fall 2023 34

Tree Depth

;;max-depth : ancestryTree -> natural

(define (max-depth c)

(cond

[(empty? c) 0]

[else (add1

(max (max-depth (person-mother c))

(max-depth (person-father c)))]))

;; Tests Done!

Examples (tests) can help in writing code.

COMP 311, Fall 2023 35

Binary Search Trees

COMP 311, Spring 2023 36

Binary Search Trees

(define-struct BTNode (num left right))

;; A binary-tree (BT) is either

;; * false, or

;; * (make-BTNode n l r)

;; where n is a number, l and r are BTs.

;; A binary-tree bt is is ordered iff either

;; * bt is empty, or

;; * bt has the form (make-BTNode n l r) where

;; Invariants:

;; 1. Numbers in l are less than or equal to n

;; 2. Numbers in r are greater than n

;; A binary-search-tree (BST) is a binary-tree abt that is ordered.

;; Hence BST is equivalent to (ordered) binary-tree

