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Review: Parametric Data Definitions

Parametric Type Definition (akin to Java Generics)
A (list-of alpha) is either:

• empty, or

• (cons a lon)         

• where alpha is any type, a is element of alpha, and lon is a 
(list-of alpha).

As we stated before, the domain of list values is built-in to Racket, as 

well as many functions like cons, cons?, empty?, list?, first, and rest.  In 

adddition, Racket includes an extensive library of functions that 

manipulate lists including length, reverse, and append.  Racket only 

supports struct definitions which do not include any type restrictions on 
operands when building new values.  Recall that our type definitions are 
simply comments providing documentation.    
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Template for (list-of alpha)

;; (define (f ... a-list ...)

;;   (cond

;;     [(empty? a-list) ...]

;;     [(cons? a-list)  ... (first a-list) ... 

;;       ... (f ... (rest a-list) ...) ...]))

Note that the template does not depend on the element type alpha.

It applies t(list-of alpha) where alpha is any type. 



COMP 311, Fall 2023 4

Plan for Today

• List abbreviations

• More discussion of the list template

• Data-directed design with numbers

• Strong structural recursion

• Another ubiquitous self-referential data 

type: trees
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List Abbreviations

• Let c1, c2, …, cn be constants (including quoted symbols).

(list c1 c2 ... cn) abbreviates
(cons c1 (cons c2 ... (cons cn empty))...)

• Let s1, s2, …, sn be symbols , constants (excluding symbols) or lists 
constructed of such atoms.

• '(s1 ... sn) abbreviates   (list 's1 ... 'sn)

• Examples (all equal)

'((1 2) (3 four))

(list (list 1 2) (list 3 'four))
(cons (cons 1 (cons 2 empty)) (cons (cons 3 (cons ‘four empty)) empty))

• Do not nest quoted notation; it won’t work.

• Do not use true, false, empty inside quotation; there are symbols 
'true, 'false, 'empty that are distinct from true, false, empty.
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A simple list function that takes 2 list arguments

• The append function that concatenates lists is 
built-in to Racket.  We will define this function

; app: (list-of alpha) (list-of-alpha -> list-of-alpha)
; contract: (app a b) concatenates the lists a and b.

; Examples
(check-expect (app '(a b) '(c d)) '(a b c d))
(check-expect (app empty '(c d)) '(c d))
(check-expect (app '(a b) empty) = '(a b)

; Template Instantiation (on which argument do we recur?)
|#
(define (app x y)
(cond [(empty? x) ...]

[(cons? x) ... (first x) ... 
(app (rest x) y) ... ]))

#|
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app cont.

• ; Code:
(define (app x y)
(cond [(empty? x) y]

[(cons? x) (cons (first x) (app (rest x) y)]))

; Test?  Already done!

• Would recurring on the second argument work?
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Using append as an auxiliary function

• append is included in the Racket library

• akin to concatenation, which is the common 

string (a form of list of char) “construction” 

operation

• Problem: cost of operation is not constant; it is 

proportional to size of first argument (or, in case 

of strings, size of constructed list)

• Example of function that when simply coded 

uses append to construct its result: flatten
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Defining Deep Lists and flatten

;; A deep-list is either:

;; * empty, or

;; * (cons s adl) where a is a symbol or a deep-list and adl is a deep-list

;; Examples

(define dl1 '((())))

(define dl2 '((a) ((b))))

(define dl3 '((a b c d (e)) ((f) ((g)))))

;;

;; Template for deep-list

#|

(define (f ... dl ... )

(cond [(empty? dl) ... ]

[(cons? d1)

(cond [(symbol? (first dl)) ... (first dl) ... (flatten (rest dl)) ...)]

[(empty? (first dl)) ... (flatten (rest dl)) ... ]

[(cons? (first dl)) ... (flatten (first dl)) ... (flatten (rest dl)) ... ])]))

|#

;; flatten: deep-list -> (list-of symbol)

;; Contract: (flatten dl) consumes a deep-list dl and concatenates all of

;; the symbols embedded in dl into a symbol-list where the symbols appear

;; in the same order as when dl is printed as string.

;; input to form a list of elements
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Defining Deep Lists and flatten (cont.)

;; Examples: 

(check-expect (flatten dl1) empty)

(check-expect (flatten dl2) '(a b))

(check-expect (flatten dl3) '(a b c d e f g))

;; Template Instantiation for flatten:

#|

(define (flatten dl)

(cond [(empty? dl) ... ]

[(cons? d1)

(cond [(symbol? (first dl)) ... (first dl) ... (flatten (rest dl)))]

[(empty? (first dl)) ... (flatten (rest dl)) ... ]

[(cons? (first dl)) ... (flatten (first dl)) ... (flatten (rest dl)) ... ])]))

|#

;; Code:

(define (flatten dl)

(cond [(empty? dl) empty ]

[(cons? d1)

(cond [(symbol? (first dl)) (cons (first dl) (flatten (rest dl)))]

[(empty? (first dl)) (flatten (rest dl))]

[(cons? (first dl)) (append (flatten (first dl)) (flatten (rest dl)))])]))
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Defining flatten
;; Tests Done!

Improving flatten?      Need a help function with an accumulator;
next lecture.  We can avoid using append.
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Algebraic Data I

Given a set of constructor symbols C (with associated arities > 0) and a set of 

primitive data values P, the domain of values generated by C and P is inductively 

defined as follows: 

1. Every primitive value p  P is a value; and

2. For every constructor c  C of arity n, and values v1, …, vn, 

c(v1, …, vn) is a value.

If P is the set of primitive values of basic Racket (which excludes strings, 

functions, vectors [arrays], and other more complex built-in forms of data) and C 

is the set of primitive constructors (only cons) plus the constructors defined in a 

Racket program P, the domain of value available in P is simply the set of values 

generated by C and P.  In this domain, every data value has the form p  P or 

c(e1, e2, … en) where c C with arity n and e1, e2, … en are data values.

Observation From this perspective, every value in a Racket program is a tree. 

Recall that we are not yet including functions as data values.
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Algebraic Data I (cont)

Freely generated algebras are part of a branch of mathematics called universal 

algebra.  A data value is any expression of the form cj(e1, e2, … en) where cj

C and e1, e2, … en are expressions denoting elements of the algebra.  Given a 

set of type symbols T, an algebraic type definition  consists of a finite set T of 

type symbols T1, …, Tk  T defined by type equations:

T1 = 1,     . . .,     Tk = k

where each phrase i is a union of constructions [data values] cj(Tj,1, Tj,2, … 

Tj,nj
) where each symbol Tj,I T and the constructors cj in i are distinct within . 

The last restriction is pragmatic: it ensures that each type expression of the 

form cj(Tj,1, Tj,2, …, Tj,nj
) in a type definition  denotes a disjoint subset of the set 

V of all possible value constructions and that each element of type Ti belongs 

to a unique component cj(Tj,1, Tj,2, … Tj,nj
) of I, facilitating the efficient matching 

of any element of Ti against the components of of I.  Languages in the ML 

family enforce these restrictions to ensure the type of every program 

expression can be inferred
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Algebraic Data II

• Note that we have explicitly excluded functions from P.  Why?

• In a typical functional program, the value domain V includes an 

enormous amount of “junk” because no restrictions are placed on 

the value arguments v1, v2, … vn in a construction c(v1, v2, …, vn).

• The ML family of languages, including Haskell, follows a different 

conceptual path (as desribed in the preceding slide), imposing  

type restrictions on the operands of constructions and functions

• Every (mono)type is disjoint from every other (mono)type.

• Every value belongs to a unique monotype.

Haskell has added some interesting workarounds to support a form 

of subtyping.
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Algebraic Data Types I

In the documentation framework that we use for Racket, we introduce type definitions 

for the purpose of precise program documentation.  Note that our types are subsets of 
the program domain of values V that can overlap (as in Java).  The framework is not 

designed to support static type checking.

A type definition in a program P has the form

T := S1 | S2 | … | Sn

where

• T is a new name (identifier);

• each Si is either 

• a recursive subset of P,

• a type T defined elsewhere in the program

• an expression c(T1, …, Tk) denoting the set  { c(v1, …, vk) | vi Ti }  where c is a 

defined constructor (possibly primitive) and Ti is defined elsewhere in the program.

The sets Si must be disjoint.

We often write these definitions out in prose rather than using the := notation.

There is an obvious structural induction scheme for reasoning about an algebraic type.
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Algebraic Data Types II

Our data definition framework is very expressive.  Essentially any data domain consisting of 

freely constructed finite trees can be formulated as algebraic data.  Some examples include:

• Files on your computer (at least in Linux)

• Simple File (an array of characters), or

• Folder, which contains a list of pairs (string, file)

• XML

• Baroque format for representing algebraic data as ASCII text

• Internet domain names

• Structurally well-formed programs (abstract syntax)

In some cases, the domain of interest must be embedded in a larger “freely constructed 

domain”.  For example, the domain of ascending integer-lists must be embedded in a larger 

domain such as all integer-lists.  The former is not an algebraic type but the latter is.

On the other hand, some forms of data are best characterized as quotients of algebraic types.  I 

am not aware of a mainstream functional language that directly supports data definitions that 

construct quotients of algebraic types.  In contrast, this form of data definition is easily done in 

many class-based OO languages.
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Inductive Structure of N

• Standard definition from mathematics

;; A natural (natural number) is either

;; 0, or

;; (add1 n)

;; where n is a natural-number (natural)

• We often use the symbol N to denote this domain.

• In mathematics, add1 is usually called succ, suc, or S, for successor. 
The deduction rule for mathematical induction on the natural numbers 
embodies the preceding definition:

P(0), x [P(x) → P(add1(x))]
—————————————-

x P(x)

• Is there an analogous induction principle for other forms of inductively 

defined data?  Yes!  For all inductively defined domains, there are 

analogous natural deduction proof rules
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Basic Operations on Naturals

• Examples (using constructors)
• Zero:  0

• One:  (add1 0)

• Four:  (add1 (add1 (add1 (add1 0))))

• Accessors:  
• sub1 : N -> N

Note: sub1 is typically called pred or P in mathematical logic; in 

Racket (sub1 0) is not an error (for reasons explained later).

• Recognizers:
• zero? : Any -> bool

• positive? : Any -> bool  ;; why not add1?
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Basic Laws (Reductions) for Natural Numbers

• The rules for primitive or auto-generated (for define-struct) 
operation for a (typically infinite) table

• Recall the ones for lists:
• For all values v, and list values l, we have

• (empty? empty) = true ;; recognizer
• (empty? (cons v l)) = false

• (rest (cons v l)) = l ;; accessor
• (first (cons v l)) = v

• Basic laws:
• For all natural numbers n, we have

• (zero? 0) = true ;; recognizer
• (zero? (add1 n)) = false

• (positive? (add1 n)) = true

• (positive? 0) = false

• (sub1 (add1 n)) = n ;; accessor

• Similar rules exist for all inductively-defined data types

• What about laws for (equal? ...)
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Natural Numbers:  Template

• Template for the natural data type is very similar to 

lists:

;; f : natural -> ... 

;; (define (f ... n ...)

;;  (cond [(zero? n) ...]

;;        [(positive? n) 

;;         ...(f ... (sub1 n)) ...]))
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Example

• Write a function that repeats a symbol s several (n) times

• Examples:

(repeat 'Rabbit 0) = empty

(repeat 'Rabbit (add1 (add1 0))) = '(Rabbit Rabbit)

• Code: (omitting [behavioral] contract function template for repeat)

;; repeat : symbol natural -> symbol-list

(define (repeat s n)

(cond [(zero? n) empty]

[else (cons s (repeat s (sub1 n)))]))
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Generalization: Full Structural Recursion

• Corresponds to “strong induction” on natural numbers

P(0), n [n′ < n P(n′) ] → P(S(n))]

———————————————

n P(n)

• Template instantiation includes recursive calls on 

deeper “predecessors” than the immediate ones; the 

instantiation must anticipate what predecessors are 

required.
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Example of Full Structural Recursion

;; fib: natural -> natural

;; Template instantiation for fib

;;(define (fib n)

;; (cond [(< n 2) ...]

;; [(positive? n) ... (fib (- n 1))

;;           ... (fib (- n 2)) ... )]))

;;) 

;; Code:

;; Some definitions of the Fibonacci sequence start 0, 1, ...

(define (fib n)

(cond [(< n 2) 1]

[(positive? N) (+ (fib (- n 1)) (fib (- n 2)))]))
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Defining Add

(define (add m n)

(cond

[(zero? m) n]

[(positive? m) (add1 (add (sub1 m) n))]))

(define (right-add m n)

(cond

[(zero? n) m]

[(positive? n) (add1 (right-add m (sub1 n)))]))
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Defining Integers

• An integer is either:

• 0; or

• (add1 n) where n has the form 0 or (add1 ...) [... non-negative]; or 

• (sub1 n) where n has the form 0 or (sub1 ...) [... non-positive].

• Recognizers:

• zero?: any -> bool

• positive?: any -> bool

• negative?: any -> bool

• In Racket, add1 and sub1 have been extended to all integers by 

defining for all integers n :

• (add1 (sub1 n)) = n

• (sub1 (add1 n)) = n

• Hence, (add1 -1) and (sub1 0) are not errors.
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Another Inductive Type: Trees
• (Natural number) Labeled trees

• Organizational charts

• Decision trees

• Search trees

and many more!
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From Lists to Trees
Example of a List Data Definition (very familiar)

;; Given the built-in two argument constructor cons with

;; fields first and rest:

;; An (list-of alpha) is

;; * empty, or

;; * (cons s los)

;; where s is an alpha and los is a alpha-list

Example of a Tree Data Definition

;; Given the struct definition

(define-struct person (name mother father))

; An ancestryTree is

; * empty    (representing “unknown origin” or “none”)

; * (make-person n m f)   (with two self-references)

; where n is a symbol, m is a person and f is a person

; A person is:

; * (make-person n m f)

; where n is a symbol, m is a person and f is a person
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Examples of ancestryTree

(make-person 'Bob

(make-person 'Jane empty

(make-person 'Tom

(make-person 'Cat empty empty) empty))

(make-person ’Rob empty

(make-person ’Sue empty

(make-person 'Ray empty

(make-person ’Johny empty empty)))))
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Template for ancestryTree

• In non-empty trees, we anticipate accessing each child 

of the tree:

; f : ancestryTree -> ...

; (define (f ... at ...)

;  (cond

;    [(empty? at) ...]

;    [else ... (person-name at) ...

;     ...  (person-mother c) ...

;     ...  (person-father c) ...]))
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Template for ancestryTree

Recursion in type → recursion in template

; f : person -> ...

; (define (f ... c ...)

;  (cond

;    [(empty? c) ...]

;    [else ... (person-name c) ...

;     ... (f (person-mother c)) ...

;     ... (f (person-father c)) ...]))
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Example: Tree Depth

• Consider the following problem

• Given an ancestry tree, compute the maximum 

number of generations for which we know 

something about this person.

• Type (contract):  person -> natural

• (Behavioral) Contract: ...

• Examples (next slide)

• Template?
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Tree Depth Examples

(define cat (make-person 'Cat empty empty))

(define tom (make-person 'Tom cat empty))

(define jane (make-person empty tom))

(define johnny (make-person 'Johnny empty empty))

(define ray (make-person 'Ray empty johnny))

(define sue (make-person 'Sue empty ray))

(define rob (make-person 'Rob empty sue))

(define bob (make-person 'Bob jane rob))

(check-expect (max-depth cat) 1)

(check-expect (max-depth tom) 2)

(check-expect (max-depth jane) 3)

(check-expect (max-depth johnny) 1)

(check-expect (max-depth ray) 2)

(check-expect (max-depth sue) 3)

(check-expect (max-depth rob) 4)

(check-expect (max-depth bob) 5)
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Tree Depth Template Instantiation

;; max-depth : ancestryTree -> natural

;; (define (max-depth c)

;;   (cond

;;     [(empty? c) ...]

;;     [else ...

;;       ... (max-depth (person-mother c)) ...

;;       ... (max-depth (person-father c)) ...]))
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Tree Depth

;;max-depth : ancestryTree -> natural

(define (max-depth c)

(cond

[(empty? c) 0]

[else (add1

(max (max-depth (person-mother c))

(max-depth (person-father c)))]))

;; Tests  Done!

Examples (tests) can help in writing code.  
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Binary Search Trees
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Binary Search Trees

(define-struct BTNode (num left right))

;;  A binary-tree (BT) is either

;;  * false, or

;;  * (make-BTNode n l r)

;;  where n is a number, l and r are BTs.

;;  A binary-tree bt is is ordered iff either

;;  * bt is empty, or

;;  * bt has the form (make-BTNode n l r) where

;; Invariants:

;;  1. Numbers in l are less than or equal to n

;;  2. Numbers in r are greater than n

;; A binary-search-tree (BST) is a binary-tree abt that is ordered.

;; Hence BST is equivalent to (ordered) binary-tree


