
1

Comp 311

Accumulators, Help Functions and

Mutually Referential Data Definitions

Corky Cartwright

Department of Computer Science

Rice University

COMP 311, Fall 2023 2

Accumulators and Help Functions

• Fast algorithms often use “temporaries” and auxiliary data
structures

• Common examples abound. Some appear on HW2. An example
that integrates well with the narrative in these lectures: a more
efficient version of flatten.

• Key idea: introduce help functions with extra arguments that are
bound to the requisite temporary data values that are updated (in
recursive calls) as the computation proceeds.

• Key restriction: the temporaries and auxiliary data values must
be updateable without mutation! The new values are constructed
from existing values without modifying the latter.

• Connection with imperative loops: the variables that are
mutated in each loop iteration correspond to accumulators holding
temporary values. You can literally translate a loop to a help
function using this correspondence. Observation: help functions
with accumulators are more general than conventional loops!

COMP 311, Fall 2023 3

Intuitions Guiding The Design of Help Functions

• To avoid using append, we must construct results from right-to-left
rather than left-to-right and we must carry all of the values that are
updated on each call (iteration in an imperative loop) as
accumulators.

• Consequence:

• The base case is an expression that constructs the result
(typically using a few constant-time operations) from the
accumulator values.

• To avoid stack overhead, all calls on the parent help function must
be in tail position. If an expression appears in tail position, no
more operations need to be performed to return the answer from
the parent function eliminating the need to even return to the
parent function (which would simply return to its caller). The
optimized code returns immediately to the parent’s caller (unless it
too performed

COMP 311, Fall 2023 4

Familiar Example: flatten

• Our naïve formulation of flatten relies on append to concatenate
sections of the result list. This process (which is applied recursively!)
implies that the running time of flatten is quadratic. If we wrote
imperative code we could clearly perform this computation in linear
time since we can concatenate lists in linear time if we use a linked
representation and maintain list headers with pointers to the last
elements.

• Observation: our naïve functional formulation constructs the
flattening of (first dl) by using cons to build a list of symbols
that is initially empty. We could use the flattening of (rest dl)
instead of empty as the seed value for flattening (first dl). But
this revision requires a help function that takes the accumulated list
(the flattening of (rest dl)) as an extra argument. Let’s write it.
Note that our recursive calls must use the help function in order for
the optimization to be performed “all the way down” to the leaves of
the input deep list dl.

COMP 311, Fall 2023 5

A Faster Version of flatten

;; flatten-help: deep-list (list-of symbol) -> (list-of symbol)

;; Contract: Given a deep-list dl and a (list-of symbol) accum,

;; (flatten-help dl accum) returns the flattening of dl appended to accum.

;; Examples ...

;; Template Instantiation (of deep-list Template)

#|

(define (flatten-help dl accum)

(cond [(empty? dl) ...]

[(cons? d1) ;; else could be used here

(cond [(symbol? (first dl)) ... (first dl) ... (flatten-help (rest dl) accum) ...)]

[(empty? (first dl)) ... (flatten-help (rest dl) accum) ...]

[(cons? (first dl)) ...

(flatten-help (first dl) (flatten-help (rest dl) accum) ...])]))

|#

;; Code:

(define (flatten-help dl accum)

(cond [(empty? dl) accum]

[(cons? d1)

(cond [(symbol? (first dl)) (cons (first dl) (flatten-help (rest dl) accum)))]

[(empty? (first dl)) (flatten-help (rest dl) accum))]

[(cons? (first dl))

(flatten-help (first dl) (flatten-help (rest dl) accum)])]))

;; flatten: deep-list -> (list-of symbol)

;; Contract: ...

;; Template Instantion ... [trivial]

;; Code

(define (flatten dl) (flatten-help dl empty))

COMP 311, Fall 2023 6

Mutually Referential Data Definitions

• Real world data tends to have more diversity than simple
lists or binary trees.

• My favorite example: program expressions, often called
abstract syntax.

• Critical insight in defining program data; it has far more
structure than what normal input/output media support,
i.e., sequences of characters, arrays of pixels.

• Applications typically need to build rich hierarchical or
linked representations. Circular linking (general graphs)
is messy but occasionally necessary; trees or DAGs
(directed-acyclic graphs) have a simple inductive
structure and for this reason are preferred in
programming tools.

COMP 311, Fall 2023 7

Terminology
• Common terminology: mutually recursive instead of mutually referential.

• Which is better? I prefer recursive because it suggests repeating
hierarchical structure which is the normal and attractive form of diversity
typically encountered in computation. Random interconnections are
difficult to process.

• Key insight: defining one operation over a recursively interconnected
collection of types requires writing a collection of functions, one for each
form of data in the web of mutually recursive types. Many different forms
of data (constructors) and best handled by writing a separate function for
each kind (echoes of OO design).

• Each reference to a given mutually recursive type in a data domain
definition corresponds to a different recursive call to the appropriate
function in the corresponding template.

• Sound OO? There is a deep connection between the OO perspective
and the functional one.

COMP 311, Fall 2023 8

Canonical Example: Abstract Syntax

A Simplified AST Example (which is typical of introductions to abstract syntax):

; An expression is one of:
; - a number
; - a symbol
; - (make-mul e1 e2) where e1 and e2 are expressions
; - (make-add e1 e2) where e1 and e2 are expressions
; - (make-div e1 e2) where e1 and e2 are expressions
; - (make-sub e1 e2) where e1 and e2 are expressions
; given

(define-struct mul (left right))
(define-struct add (left right))
(define-struct div (left right))
(define-struct sub (left right))

; Examples
; 5
; 'f
; (make-mul 5 3)
; (make-add 5 3)
; (make-div 5 3)
; (make-sub 5 3)

COMP 311, Fall 2023 9

Templates.
; Template for processing such an expression

(define (f ... exp ...)
(cond ;; six different forms of an AST

[(number? exp) ...]
[(symbol? exp) ...]
[(mul? exp) ... (f ... (mul-left exp) ...) ... (f ... (mul-right exp) ...) ...]
[(add? exp) ... (f ... (add-left exp) ...) ... (f ... (add-right exp) ...) ...]
[(div? exp) ... (f ... (div-left exp) ...) ... (f ... (div-right exp) ...) ...]
[(sub? exp) ... (f ... (sub-left exp) ...) ... (f ... (sub-right exp) ...) ...]))

This template is rather large (six cases) and potentially ugly; the primary saving grace is that the four operations

(+, *, -, /) all have very similar form: they all process pairs of numbers. These four operations are often chosen

as a starting point because they are familiar infix algebraic operations that we all regularly use and understand.

For some functions, such as evaluating oridinary arithmetic expressions, this template works well.

But do we want to design all frameworks for expression processing based on this limited form of data? What

about binding local variables and retrieving their values. What about expression languages that support defining

new functions. What about expression languages that support passing functions as arguments? Suddenly the

simple case splitting model embodied in the preceding template looks much too rigid and narrow. For many

problems, we need a more general framework for handling many different linguistic constructions. The

sublanguage in this example only contains applications of primitive functions to numbers.

We will look at richer data definitions of abstract syntax later in the course.

COMP 311, Fall 2023 10

Function calls in templates

• Mutually recursive calls are part of each template

• Processing a mutually recursive type is very similar to processing a
“singly” recursive type.

• A set of mutually recursive type definitions is really one big recursive
type definition with multiple parts where each part has a template.

• To ensure termination, the structure of the function calls in the
template(s) is crucial for ensuring termination; each recursive call should
reduce “a measure of the arguments” with values taken from a well-
founded set (no infinite descending chains).

• This goal is not always achievable; the desired behavior may include
divergence. Can you think of a real world sequential program consuming
a finite input that does not always terminate? (Hint: what about
interpreting programs in a Turing complete language? Note that such an
interpreter does not use ordinary structural recursion on program syntax.)

COMP 311, Fall 2023 11

More about termination

• For the inductive (self-referential) types we saw before today, a

recursive functions terminates if

• it handles the base case(s) cleanly, and

• it only makes recursive calls on substructures of its primary argument,

e.g., the rest of a non-empty list

• Mutually recursive (referential) definitions are the same

• Example: Imagine a type box that can contain bags, and a type bag

(implemented using (define-struct bag (boxes)) that contains a list of

boxes. Why does the template ensure termination?

• Any box will be bigger than any bag it contains

• Similarly for bags.

• No infinite descending chains of containment.

• Note: do not confuse the name bag with the mathematical concept of a

bag (multi-set).

COMP 311, Fall 2023 12

A Richer Example (Unix File System)
; A file is either:

; a rawFile, or

; a dir (short for directory)

; A rawFile is (make-rawFile text) where text is a

; a (list-of char)

(define-struct rawFile (text))

; A dir is a structure

; (make-dir nFiles) where nFiles is a (list-of nFile)

(define-struct dir (nFiles))

; An nFile is a pair structure

; (make-nFile name f) where name is a symbol and f is

; a file.

(define-struct nFile (name file))

In contrast to simple arithmetic expressions, this domain has two different types that are
primary. There are important operations that make sense for inputs of type dir that do
not make sense for a rawFile.

Observation: files should not have names! Windows blew it!

COMP 311, Fall 2023 13

Mutually Recursive Templates

; file-f : f -> ...

(define (file-f ... f ...)

(cond [(rawFile? f) ... (rawFile-text f) ...]

[(dir? f) ...

... (dir-f ... f ...)) ...]))

; dir-f : dir -> ...

(define (dir-f ... d ...)

... (nFiles-f ... (dir-nFiles d) ...) ...)

; nFiles-f: nFile-list -> ...

(define (nFiles-f ... nFiles ...) ;; nFiles is nFile-list

(cond [(empty? nFiles) ...]

[(cons? nFiles) ...

... (file-f ... (nFile-file (first nFiles)) ...) ...)

... (nFiles-f... (rest nFiles) ...) ...]

;;

COMP 311, Fall 2023 14

Sample function on file system

; find?: file symbol -> boolean

; Contract: (find? f n) determines whether a file (which must

; be a directory for this query to be interesting) contains

; file with the name n.

; Instantiated template

#|

(define (find? f n)

(cond [(rawFile? f) false]

[(dir? f) ... (nFiles-find? (dir-nFiles f) n) ...)

(define (nFiles-find? nfl n)

(cond [(empty? nfl) ...]

[(cons? nfl)

... (nFile-find? (first nfl) n) ...

... (nFiles-find? (rest nfl) n) ...]))

(define (nFile-find? nf n)

... (nFile-name nf) ...

... (find? (nFile-file nf) n) ...)

|#

COMP 311, Fall 2023 15

Code
;; find?: file symbol -> boolean

(define (find? f n)

(cond [(rawFile? f) false]

[(dir? f) (nFiles-find? (dir-nFiles d) n))

;; nFiles-find?: (list-of nFile) symbol -> boolean

(define (nFiles-find? nfl n)

(cond [(empty? nfl) false]

[(cons? nfl)

(or (nFile-find? (first nfl) n)

(nFiles-find? (rest nfl) n)]))

;; nFile-find?: nFile symbol -> boolean

(define (nFile-find? nf n)

(or (equal? (nFile-name nf) n)

(find? (nFile-file nf) n))

Aside: What is the meaning of or ? Does it behave like a program-defined function?

