Program Semantics and Lexical Scope

Corky Cartwright
Department of Computer Science
Rice University

Programs vs. Expressions

- Reduction of expressions to values is the core of an algebraic formulation of computation.
- Comprehensive semantics for programs goes beyond evaluation of expressions.
- From an abstract perspective, an idealized program consists of a collection of function definitions, which may involve computation to create, and an expression constructed from those definitions to solve a computational problem.
- The semantics of Racket (or any functional language) is not simply the evaluation of expressions. It must also encompass collections of declarative function definitions.

What is the Semantics of a Program?

A program is a collection of declarative function definitions plus an expression constructed using those function definitions that solves a given problem.

- From this perspective, a Racket program has the form:
(define f_{1} (lambda ($\mathrm{v}_{1,1} \ldots \mathrm{v}_{1, \mathrm{n}}$) <body-of- $\mathrm{f}_{1}>$)
(define f_{n} (lambda ($\mathrm{v}_{\mathrm{m}, 1} \ldots \mathrm{v}_{\mathrm{m}, \mathrm{n}}$) <body-of- $\mathrm{f}_{\mathrm{n}}>$)
<expr constructed from $f_{1}, \ldots f_{n}+$ prim ops>

What is the Semantics of a Program?

A program is a collection of declarative function definitions plus an expression constructed using those function definitions that solves a given problem.

- From this perspective, a Racket program has the form:
(define f_{1} (lambda ($\mathrm{v}_{1,1} \ldots \mathrm{v}_{1, \mathrm{n}}$) <body-of- $\mathrm{f}_{1}>$)
(define f_{n} (lambda ($\mathrm{v}_{\mathrm{m}, 1} \ldots \mathrm{v}_{\mathrm{m}, \mathrm{n}}$) <body-of- $\mathrm{f}_{\mathrm{n}}>$)
<expr constructed from $f_{1}, \ldots f_{n}+$ prim ops>

What is the Semantics of a Program?

Extend the reduction model to perform left-most evaluations on full programs.

```
(define f}\mp@subsup{f}{1}{}\mp@subsup{E}{1}{}\mathrm{ )
```

(define $f_{n} E_{n}$)
$\mathrm{E} ;$; constructed from $f_{1}, \ldots f_{n}+$ prim ops

- We reduce E_{1}, \ldots, E_{n} to values $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$ in leftmost order and then reduce E. In a typical program, most of the right-hand sides E_{1}, \ldots, E_{n} are already values. In all of the programs we have studied so far, all of the right-hand sides have been values. When evaluating E_{i}, all of the values of the preceding declared functions f_{j} are available. When evaluating E, the values of all of the functions f_{j} are available. If any of these sub-computations diverge or abort with errors, the entire computation diverges or aborts with the error.

Examples

```
    (define double (lambda (n) (+ n n)))
    (double 5)
=> (define double ... )
    ((lambda (n) (+ n n)) 5)
=> ...
    (+ 5 5)
=> ...
    10
```


Examples cont.

```
    (define fact (lambda (n) (if (zero? n) 1 (* n (fact (sub1 n))))))
    (fact 1)
=> (define fact ... )
    ((lambda (n) (if (zero? n) 1 (* n (fact (sub1 n))))) 1)
=> (define fact ... )
    (if (zero? 1) 1 (* 1 (fact (sub1 1))))
=> (define fact ... )
    (if false 1 (* 1 (fact (sub1 1))))
=> (define fact ... )
    (* 1 (fact (sub1 1)))
=> (define fact ... )
    (* 1 (fact 0))
=> (define fact ... )
    (* 1 ((lambda (n) (if (zero? n) 1 (* n (fact (sub1 n))))) 0))
=> (define fact ... )
    (* 1 (if (zero? 0) 1 (* 0 (fact (sub1 0)))))
=> (define fact ... )
    (* 1 (if true 1 (* 0 (fact (sub1 0)))))
=> (define fact ... )
    (* 1 1)
=> (define fact ... )
    1
```


Nested scope

Algol 60 introduced the concept of nested scope to the world of programming languages

- The idea (obvious in retrospect?) is much older. It was central to the lambda-calculus in the 1930's. Quantifications in first-order logic also have nested scopes.
- The syntax of the lambda-calculus was essentially Core Racket without define and all primitive operations and constants, leaving only variables, applications, and lambda-abstractions.
- The pure lambda calculus encoded numbers, booleans, and conditionals as functions (ugh!) which technically reduced it to a huge syntactic hack until Dana Scott salvaged it in 1970 by developing topological models (originally complete lattices and subsequently complete partial orders), now called domain theory.
- Gordon Plotkin (who extended and refined Scott's models) designed what is now the canonical "impure" (but semantically elegant) extension of the pure lambda calculus called PCF by adding the following constants to the pure calculus: natural numbers, a ternary function if-zero?, add1, and sub1. Plotkin's original version of PCF included more machinery (including static types) but it is not essential. In fact, our minimal untyped version is more elegant for reasons that I can explain if you take Comp 411.

Lambda Notation Introduces Nested Scope

Since lambda-abstractions are a form of Core Racket expression, a domain that has a simple inductive definition, lambda-abstractions can be nested!

Example:
;; compose: (any -> any) (any -> any) -> (any -> any)
; ; given unary functions f and g, (compose f g) returns their
;; composition
(define compose (lambda (f g) (lambda (x) (f (g x)))))
What if the inner lambda introduced a variable named f ? What if we try to mention b outside this lambda We need to identify the scope of the binding occurrence of a variable.

Nesting Is the Consequence of Inductive Definition

Since lambda-abstractions are a form of Core Racket expression, a domain that has a simple inductive definition, lambda-abstractions can be nested! By definition, an expression can occur within an inductively constructed expression,

Example:

;; compose: (any -> any) (any -> any) -> (any -> any)
; ; given unary functions f and g, (compose f g) returns their
;; composition
(define compose (lambda (f g) (lambda (x) (f (g x)))))
Nested lambda-abstractions are particularly important because they typically introduce new variables. The scope of a variable introduced in a lambda-abstraction is the body of the lambda-abstraction.

How Do We Nest Programs?

Ordinary Racket and Scheme don't technically support it. There is no expression that has the form of a program. Recall that a program is not an expression. A program is a (possibly empty) sequence of definitions followed by an expression. Ordinary Racket and Scheme do support local scope because they support nested lambdaabstractions. But lambda bindings do not syntactically look exactly like bindings created by define. Semantically, they are the same, but they look syntactically different. The bindings created by applying a lambda-abstraction to argument values are very hard to read if the body of the lambda-abstraction is non-trivial. For this reason, both Ordinary Racket and Scheme support an easier-to-read syntactic construct called let, which we will introduce later even though it is superfluous in HTDP Racket because the program nesting construct local supports exactly the same form of binding.

The local Construct for Program Nesting

- BNF Syntax (cryptic inductive definition) for local
- exp ::= ... (local ($\operatorname{def}_{1} \operatorname{def}_{2} . . . \operatorname{def}_{n}$) exp)
- def $::=$ (define var exp) | (define (var var $_{2}$... var ${ }_{n}$) exp)

In many contexts, the names of syntactic
categories are enclosed in pointy brackets
rather than italicized, e.g. <var> instead of var

- Simple examples
- (local [(define x 3)
(define y 5)
(define double (lambda x) (+ x x)))]
(double (-y x)))
- (local [(define disc (- (* b b) (* 4 a c)))] (sqrt disc))

Definition

- What's wrong with following expressions?
- (local [(define x 1)])
- (local [(define x 1)
(define x 2)]
x)
- (local [(define x 1)
(define f (+ x 1))]

$$
(f x))
$$

Why local?

Reason 1: Avoid namespace pollution

```
;; sort: list-of-numbers -> list-of-numbers
(define (sort alon)
    (cond
        [(empty? alon) empty]
        [(cons? alon) (insert (first alon)
        (sort (rest alon)))]))
    ;; insert: number list-of-numbers (sorted) -> list-of numbers
    (define (insert an alon)
        (cond
    [(empty? alon) (list an)]
```


Why local?

- Namespace pollution cont.
; ; insert-sort: list-of-numbers -> list-of-numbers
(define (insert-sort alon)
(local

```
; ; insert: number list-of-numbers (sorted) -> list-of numbers
((define (insert an alon)
    (cond
        [(empty? alon) (list an)]
        [else (if (< an (first alon))
        (cons an alon)]
            (cons (first alon) (insert an (rest alon)))])))
(cond
            [(empty? alon) empty]
            [(cons? alon) (insert (first alon) (insert-sort (rest alon)))]))
```

Naïve implementation adds overhead. In principle, it can be eliminated by optimization.

Why local?

- Namespace pollution cont.
(define (main_fun x) exp)
(define (aux_fun ${ }_{1}$...) $\exp _{1}$)
(define (aux_fun 2 ...) $\exp _{2}$)


```
(define (main_fun x)
    (local ((define (main_fun x) exp)
        (define (aux_fun \({ }_{1} \ldots\)...) \(\exp _{1}\) )
        (define (aux_fun 2 ...) \(\exp _{2}\) ))
        (main_fun x)))
```


Why local?

Reason 2: Avoid repeated computation

Why local?

- Reason 2: Avoid repeated computation

```
(define (power los)
    (cond [(empty? los) (list empty)]
    [(cons? los)
        (local ((define pow (power (rest los))
            (append (cons-all (first los) pow) pow)]))
```


Why local?

- Reason 3: Naming complicated expressions

```
;; mult10 : list-of-digits -> list-of-numbers
; creates a list of numbers by multiplying each digit in alod
;; by (expt 10 p) where p is the number of following digits
;; This is bad code used only as an example. Good code
; requires refactoring techniques we haven't learned yet.
(define (mult10 alod)
        (cond
            [(empty? alod) empty]
            [else (cons (* (expt 10 (length (rest alod))) (first alod))
                        (mult10 (rest alod)))]))
```


Why local?

- Reason 3: Naming complicated expressions

```
;; mult10 : list-of-digits -> list-of-numbers
; creates a list of numbers by multiplying each digit on alod
; ; by (expt 10 p) where p is the number of digits that follow
(define (mult10 alod)
    (cond
        [(empty? alod) 0]
        [else (local
            [(define a-digit (first alod))
                (define the-rest (rest alon))
                (define p (length the-rest))]
            (cons (* (expt 10 p) a-digit) (mult10 the-rest))]))
```


Variables and Scope

- At a cursory level, the scoping rule for local is the same as it is for lambda: local bindings are visible within the text of the local expression.
- Example:
. (local [(define answer ${ }_{1}$ 42) (define $\left(\mathrm{f}_{2} \mathrm{x}_{3}\right)\left(+1 \mathrm{x}_{4}\right)$)]
(f_{5} answer $_{6}$))
- Variable occurrences: 1-6
- Binding (or defining) occurrences: 1,2,3
- Use occurrences: 4,5,6
- Scopes: 1:? 2:? 3:? The details are subtle.
- General rules for local:
- local variables are visible only within the local expression
- Within the local expression, scoping behaves exactly like it does in top-level programs.
- The are several important variations in scoping rules for nested binding constructs captured by the Racket/Scheme constructs let, let*, letrec, which we will study later in the course. local is sufficient but ...

Variables and Scope

Recall:

- (local ((define answer ${ }_{1}$ 42) (define $\left.\left(\mathrm{f}_{2} \quad \mathbf{x}_{3}\right)\left(+1 \mathbf{x}_{4}\right)\right)$) (f_{5} answer ${ }_{6}$))
- Variable occurrences: 1-6
- Binding (or defining) occurrences: 1,2,3
- Use occurrences: 4,5,6
- Scopes:
- 1: all of local expression
- 2: all of local expression
- 3: body of function definition: (+1 x)

Variables and Scope

- In the following code segment, what will g evaluate to?

(define x 0)
(define $\mathbf{f} \mathbf{x}$)
(define $g(l o c a l((d e f i n e ~ x ~ 1)) ~ f)) ~$

Variables and Scope

- What will g evaluate to?
- (define $\times 0$)
(define f x)
(define g (local ((define x 1)) f))

Variables and Scope

- What will g evaluate to?
- (define x 0)
(define $f x$)
(define g (local ((define x 1)) f))

Variables and Scope

- What will " g " evaluate to?
- (define x 0)
(define f x)
(define g (Iocal ((define x 1)) f))

Renaming

- Recall:
- (local ((define answer ${ }_{1}$ 42)

$$
\begin{aligned}
& \left.\left.\quad\left(\text { define }^{\left(f_{2}\right.} \mathrm{x}_{3}\right) \quad\left(+1 \mathrm{x}_{4}\right)\right)\right) \\
& \left.\left.\left(\mathrm{f}_{5} \text { answer }\right)_{6}\right)\right)
\end{aligned}
$$

- Which variables can be renamed?
- Use the same name for "binding occurrence" and "use occurrence"
(local ((define answer 42)

```
        (define (f x) (+ 1 x)))
```

 (f answer))
 - What name choices can be used? Any name that does not clash with variable names already visible in same scope. A "fresh" variable name.

Renaming

- Recall:

```
- (local [(define answer }\mp@subsup{\mp@code{I}}{1}{42)
                        (define ( }\mp@subsup{f}{2}{}\quad\mp@subsup{\mathbf{x}}{3}{})(+1\mp@subsup{\mathbf{x}}{4}{\prime}))
(f}\mp@subsup{f}{5}{}\mp@subsup{\mathrm{ answer }}{6}{\prime})\mathrm{ )
```

- Which variables can be renamed?
- Use the same new name for "binding occurrence" and "use occurrences"
- (local [(define answer' 42) (define (f x) (+ $1 \mathbf{x})$)]
(f answer'))

Renaming

- Recall:

```
- (local [(define answer \({ }_{1} 42\) )
                                    (define \(\left.\left.\left(f_{2} x_{3}\right)\left(+1 x_{4}\right)\right)\right]\)
\[
\left.\left(f_{5} \text { answer }_{6}\right)\right)
\]
```

- Which variables can be renamed?
- Use the same name for "binding occurrence" and corresponding "use occurrences"
- (local [(define answer 42) (define ($\mathrm{f}^{\prime} \mathrm{x}$) (+ 1 x))]
(f' answer))

Renaming

- Recall:

$$
\begin{aligned}
& \text { - (local [(define answer } \left.{ }_{1} 42\right) \\
& \left.\left.\quad\left(\text { define }^{4} f_{2} x_{3}\right)\left(+1 x_{4}\right)\right)\right] \\
& \left.\left(f_{5} \text { answer }_{6}\right)\right)
\end{aligned}
$$

- Which variables can be renamed?
- Use the same name for "binding occurrence" and "use occurrences"
- (local [(define answer 42)
(define (f x') (+ 1 x'))]
(f answer))

Evaluation Laws

How do we (hand) evaluate Racket programs with local?

- By lifting local definitions to the top level and renaming all of the variables that they introduce (for which they create binding occurrences) with fresh names to avoid any collisions with variables already defined at the top level.
- To express these laws we need a new format for expressing rules. Why? Because promoting local constructs revises the set of definitions that constitute the environment in which evaluation takes place.
- New format: we evaluate a sequence of define forms followed by an expression (which we formerly called the program application) which yields the answer for the computation.

Evaluation Laws

- To be continued ...

