
1

Program Semantics

and Lexical Scope

Corky Cartwright

Department of Computer Science

Rice University

COMP 311, Fall 2022 2

• Reduction of expressions to values is the core of an
algebraic formulation of computation.

• Comprehensive semantics for programs goes
beyond evaluation of expressions.

• From an abstract perspective, an idealized program
consists of a collection of function definitions, which
may involve computation to create, and an
expression constructed from those definitions to
solve a computational problem.

• The semantics of Racket (or any functional
language) is not simply the evaluation of
expressions. It must also encompass collections of
declarative function definitions.

Programs vs. Expressions

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 3

• A program is a collection of declarative function
definitions plus an expression constructed using
those function definitions that solves a given
problem.

• From this perspective, a Racket program has the
form:

(define f1 (lambda (v1,1 … v1,n) <body-of-f1>)

. . .

(define fn (lambda (vm,1 … vm,n) <body-of-fn>)

<expr constructed from f1, … fn + prim ops>

What is the Semantics of a Program?

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 4

• A program is a collection of declarative function
definitions plus an expression constructed using
those function definitions that solves a given
problem.

• From this perspective, a Racket program has the
form:

(define f1 (lambda (v1,1 … v1,n) <body-of-f1>)

. . .

(define fn (lambda (vm,1 … vm,n) <body-of-fn>)

<expr constructed from f1, … fn + prim ops>

What is the Semantics of a Program?

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 5

• Extend the reduction model to perform left-most evaluations on full

programs.

(define f1 E1)

. . .

(define fn En)

E ;; constructed from f1, … fn + prim ops

• We reduce E1, ..., En to values V1, ..., Vn in leftmost order and then

reduce E. In a typical program, most of the right-hand sides E1, ..., En

are already values. In all of the programs we have studied so far, all of

the right-hand sides have been values. When evaluating Ei, all of the

values of the preceding declared functions fj are available. When

evaluating E, the values of all of the functions fj are available. If any

of these sub-computations diverge or abort with errors, the entire

computation diverges or aborts with the error.

What is the Semantics of a Program?

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 6

•

(define double (lambda (n) (+ n n)))

(double 5)

=> (define double ...)

((lambda (n) (+ n n)) 5)

=> ...

(+ 5 5)

=> ...

10

Examples

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 7

•

(define fact (lambda (n) (if (zero? n) 1 (* n (fact (sub1 n))))))

(fact 1)

=> (define fact ...)

((lambda (n) (if (zero? n) 1 (* n (fact (sub1 n))))) 1)

=> (define fact ...)

(if (zero? 1) 1 (* 1 (fact (sub1 1))))

=> (define fact ...)

(if false 1 (* 1 (fact (sub1 1))))

=> (define fact ...)

(* 1 (fact (sub1 1)))

=> (define fact ...)

(* 1 (fact 0))

=> (define fact ...)

(* 1 ((lambda (n) (if (zero? n) 1 (* n (fact (sub1 n))))) 0))

=> (define fact ...)

(* 1 (if (zero? 0) 1 (* 0 (fact (sub1 0)))))

=> (define fact ...)

(* 1 (if true 1 (* 0 (fact (sub1 0)))))

=> (define fact ...)

(* 1 1)

=> (define fact ...)

1

Examples cont.

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 8

• Algol 60 introduced the concept of nested scope to the world of programming

languages

• The idea (obvious in retrospect?) is much older. It was central to the lambda-calculus

in the 1930’s. Quantifications in first-order logic also have nested scopes.

• The syntax of the lambda-calculus was essentially Core Racket without define

and all primitive operations and constants, leaving only variables, applications,

and lambda-abstractions.

• The pure lambda calculus encoded numbers, booleans, and conditionals as

functions (ugh!) which technically reduced it to a huge syntactic hack until Dana

Scott salvaged it in 1970 by developing topological models (originally complete

lattices and subsequently complete partial orders), now called domain theory.

• Gordon Plotkin (who extended and refined Scott’s models) designed what is now

the canonical “impure” (but semantically elegant) extension of the pure lambda

calculus called PCF by adding the following constants to the pure calculus:

natural numbers, a ternary function if-zero?, add1, and sub1. Plotkin’s original

version of PCF included more machinery (including static types) but it is not

essential. In fact, our minimal untyped version is more elegant for reasons that I

can explain if you take Comp 411.

Nested scope

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 9

Since lambda-abstractions are a form of Core Racket expression, a

domain that has a simple inductive definition, lambda-abstractions

can be nested!

Example:

;; compose: (any -> any) (any -> any) -> (any -> any)

;; given unary functions f and g, (compose f g) returns their

;; composition

(define compose (lambda (f g) (lambda (x) (f (g x)))))

What if the inner lambda introduced a variable named f? What if we

try to mention b outside this lambda We need to identify the scope

of the binding occurrence of a variable.

Lambda Notation Introduces Nested Scope

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 10

Since lambda-abstractions are a form of Core Racket expression, a

domain that has a simple inductive definition, lambda-abstractions

can be nested! By definition, an expression can occur within an

inductively constructed expression,

Example:

;; compose: (any -> any) (any -> any) -> (any -> any)

;; given unary functions f and g, (compose f g) returns their

;; composition

(define compose (lambda (f g) (lambda (x) (f (g x)))))

Nested lambda-abstractions are particularly important because they

typically introduce new variables. The scope of a variable introduced

in a lambda-abstraction is the body of the lambda-abstraction.

Nesting Is the Consequence of Inductive Definition

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 11

Ordinary Racket and Scheme don’t technically support it. There is no

expression that has the form of a program. Recall that a program is

not an expression. A program is a (possibly empty) sequence of

definitions followed by an expression. Ordinary Racket and Scheme

do support local scope because they support nested lambda-

abstractions. But lambda bindings do not syntactically look exactly

like bindings created by define. Semantically, they are the same, but

they look syntactically different. The bindings created by applying a

lambda-abstraction to argument values are very hard to read if the

body of the lambda-abstraction is non-trivial. For this reason, both

Ordinary Racket and Scheme support an easier-to-read syntactic

construct called let, which we will introduce later even though it is

superfluous in HTDP Racket because the program nesting construct

local supports exactly the same form of binding.

How Do We Nest Programs?

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 12

• BNF Syntax (cryptic inductive definition) for local
• exp ::= …| (local (def1 def2 … defn) exp)

• def ::= (define var exp) | (define (var1 var2 … varn) exp)

In many contexts, the names of syntactic

categories are enclosed in pointy brackets

rather than italicized, e.g. <var> instead of var

• Simple examples
• (local [(define x 3)

(define y 5)
(define double (lambda x) (+ x x)))]

(double (- y x)))

• (local [(define disc (- (* b b) (* 4 a c)))]
(sqrt disc))

The local Construct for Program Nesting

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 13

Definition

• What’s wrong with following
expressions?

• (local [(define x 1)])
• (local [(define x 1)

(define x 2)]
x)

• (local [(define x 1)
(define f (+ x 1))]

(f x))

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 14

Why local?

Reason 1: Avoid namespace pollution;; sort: list-of-numbers

umber

;; sort: list-of-numbers -> list-of-numbers
(define (sort alon)
(cond
[(empty? alon) empty]
[(cons? alon) (insert (first alon)

(sort (rest alon)))]))

;; insert: number list-of-numbers (sorted) -> list-of numbers

(define (insert an alon)

(cond

[(empty? alon) (list an)]

[(cons? alon) (if (< an (first alon))

(cons an alon)

(cons (first alon) (insert an (rest alon))))]))

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 15

Why local?

• Namespace pollution cont.
;; insert-sort: list-of-numbers -> list-of-numbers

(define (insert-sort alon)

(local

;; insert: number list-of-numbers (sorted) -> list-of numbers

((define (insert an alon)

(cond

[(empty? alon) (list an)]

[else (if (< an (first alon))

(cons an alon)]

(cons (first alon) (insert an (rest alon)))])))

(cond

[(empty? alon) empty]

[(cons? alon) (insert (first alon) (insert-sort (rest alon)))]))

Naïve implementation adds overhead. In principle, it can be eliminated

by optimization.

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 16

• Namespace pollution cont.
(define (main_fun x) exp)

(define (aux_fun1 …) exp1)

(define (aux_fun2 …) exp2)

Why local?

(define (main_fun x)

(local ((define (main_fun x) exp)

(define (aux_fun1 …) exp1)

(define (aux_fun2 …) exp2))

(main_fun x)))

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2021 17

Reason 2: Avoid repeated computation

(define (power los)

(cond [(empty? los) (list empty)]

[(cons? los)

(append (cons-all (first los) (power (rest los)))

(power (rest los)))]))

Why local?

Definition Why Local Variables and Scope Renaming

repeated work

COMP 311, Fall 2021 18

• Reason 2: Avoid repeated computation

(define (power los)

(cond [(empty? los) (list empty)]

[(cons? los)

(local ((define pow (power (rest los))

(append (cons-all (first los) pow) pow)]))

Why local?

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2021 19

Why local?

• Reason 3: Naming complicated expressions

;; mult10 : list-of-digits -> list-of-numbers

;; creates a list of numbers by multiplying each digit in alod

;; by (expt 10 p) where p is the number of following digits

;; This is bad code used only as an example. Good code

;; requires refactoring techniques we haven't learned yet.

(define (mult10 alod)

(cond

[(empty? alod) empty]

[else (cons (* (expt 10 (length (rest alod))) (first alod))

(mult10 (rest alod)))]))

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2021 20

Why local?

• Reason 3: Naming complicated expressions

;; mult10 : list-of-digits -> list-of-numbers

;; creates a list of numbers by multiplying each digit on alod

;; by (expt 10 p) where p is the number of digits that follow

(define (mult10 alod)

(cond

[(empty? alod) 0]

[else (local

[(define a-digit (first alod))

(define the-rest (rest alon))

(define p (length the-rest))]

(cons (* (expt 10 p) a-digit) (mult10 the-rest))]))

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2021 21

Variables and Scope
• At a cursory level, the scoping rule for local is the same as it is for lambda:

local bindings are visible within the text of the local expression.

• Example:
• (local [(define answer1 42)

(define (f2 x3) (+ 1 x4))]
(f5 answer6))

• Variable occurrences: 1-6

• Binding (or defining) occurrences: 1,2,3

• Use occurrences: 4,5,6

• Scopes: 1:? 2:? 3:? The details are subtle.

• General rules for local:

• local variables are visible only within the local expression

• Within the local expression, scoping behaves exactly like it does
in top-level programs.

• The are several important variations in scoping rules for nested binding
constructs captured by the Racket/Scheme constructs let, let*, letrec, which
we will study later in the course. local is sufficient but …

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 22

Variables and Scope

• Recall:
• (local ((define answer1 42)

(define (f2 x3) (+ 1 x4)))

(f5 answer6))

• Variable occurrences: 1-6
• Binding (or defining) occurrences: 1,2,3

• Use occurrences: 4,5,6

• Scopes:
• 1: all of local expression

• 2: all of local expression

• 3: body of function definition: (+1 x)

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 23

Variables and Scope

• In the following code segment, what will g
evaluate to?

(define x 0)

(define f x)

(define g (local ((define x 1)) f))

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 24

Variables and Scope

• What will g evaluate to?
• (define x 0)

(define f x)

(define g (local ((define x 1)) f))

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 25

Variables and Scope

• What will g evaluate to?
• (define x 0)

(define f x)

(define g (local ((define x 1)) f))

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 26

Variables and Scope

• What will “g” evaluate to?
• (define x 0)

(define f x)

(define g (local ((define x 1)) f))

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 27

Renaming

• Recall:

• (local ((define answer1 42)

(define (f2 x3) (+ 1 x4)))

(f5 answer6))

• Which variables can be renamed?

• Use the same name for “binding occurrence” and “use
occurrence”

(local ((define answer 42)

(define (f x) (+ 1 x)))

(f answer))

• What name choices can be used? Any name that does not
clash with variable names already visible in same scope. A
“fresh” variable name.

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 28

Renaming

• Recall:
• (local [(define answer1 42)

(define (f2 x3) (+ 1 x4))]

(f5 answer6))

• Which variables can be renamed?

• Use the same new name for “binding
occurrence” and “use occurrences”

• (local [(define answer' 42)

(define (f x) (+ 1 x))]

(f answer'))

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 29

Renaming

• Recall:
• (local [(define answer1 42)

(define (f2 x3) (+ 1 x4))]

(f5 answer6))

• Which variables can be renamed?

• Use the same name for “binding occurrence”

and corresponding “use occurrences”
• (local [(define answer 42)

(define (f' x) (+ 1 x))]

(f' answer))

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 30

Renaming

• Recall:
• (local [(define answer1 42)

(define (f2 x3) (+ 1 x4))]

(f5 answer6))

• Which variables can be renamed?

• Use the same name for “binding occurrence”

and “use occurrences”
• (local [(define answer 42)

(define (f x') (+ 1 x'))]

(f answer))

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 31

Evaluation Laws
• How do we (hand) evaluate Racket programs with local?

• By lifting local definitions to the top level and renaming all
of the variables that they introduce (for which they create
binding occurrences) with fresh names to avoid any
collisions with variables already defined at the top level.

• To express these laws we need a new format for
expressing rules. Why? Because promoting local
constructs revises the set of definitions that constitute the
environment in which evaluation takes place.

• New format: we evaluate a sequence of define forms
followed by an expression (which we formerly called the
program application) which yields the answer for the
computation.

Definition Why Local Variables and Scope Renaming

COMP 311, Fall 2022 32

Evaluation Laws
• To be continued …

Definition Why Local Variables and Scope Renaming

