
1

Lambda the Ultimate and

Reduction Semantics

Corky Cartwright

Department of Computer Science

Rice University

COMP 311, Fall 2023 2

Functions Are Values

• In most mainstream languages, functions are not “first-class” values.
In contrast, in almost every functional language, functions are first-
class data values. They can be

• bound to variables (including function parameters);

• returned as results from functions;

• dynamically constructed during computation just like ordinary data values,
but this process is clumsy without better notation that we have used so
far.

• Terminology

• A functional language where functions are not values is called a first-
order functional language. SISAL is such a language. Java is often called
a first-order language because methods are not data values.

• A functional language where functions are regular data values (as
described above) is called a higher-order functional language. Nearly all
modern functional languages are higher-order.

COMP 311, Fall 2023 3

Motivation for -notation

• Many functions in programs are used only once.

• Examples: arguments to functions like
• map,

• filter,

• fold, and many more "higher-order" functions (functions that
take functions as arguments)

• Sometimes we want to build new functions in the middle
of a computation. The local construct suffices but it is
notationally clumsy for this purpose.

• provides simpler, more concise notation

• Invented by Alonzo Church in the 1930s

COMP 311, Fall 2023 4

Basic Idea
• -notation was invented by mathematicians (Church et al). For

example, given

f(x) = x2 + 1

what is f? f is the function that maps x to x2 + 1 which we

might write as

x x2 + 1

The latter avoids naming the function. The notation

x . x2 + 1 evolved instead of x x2 + 1 (for type-setting

convenience?

• In Scheme, we write (lambda (x) (+ (* x x) 1))) instead of

x . x2 + 1.

• (define (f x) (+ (* x x) 1)) abbreviates
(define f (lambda (x) (+ (* x x) 1)))

COMP 311, Fall 2023 5

Why ?

• The name was used by its inventor

• Alonzo Church, logician, 1903-1995.

• Princeton, NJ

• Introduced lambda in 1930’s to

formalize mathematical proofs

• Church is my academic great-grandfather

Alonzo Church -> Hartley Rogers ->

David Luckham -> Corky Cartwright

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

COMP 311, Fall 2023 6

Scope for a Lambda Abstraction
• Argument scope: (lambda (x1 ... xn) body) introduces the

variables x1 ... xn which have body as their scope (except for holes)

• Example:

(lambda (x) (+ (* x x) 1))

• Scope for variable introduced by define.

• At the top-level,

(define f rhs)

introduces the variable f which is visible everywhere (except inside holes introduced

by local definitions of f, including lambda bindings .

• Inside the expression

(local [(define f1 rhs1) ... (define fn rhsn)) body)

• the variables f1 ... fn have the entire local expression as their scope.

• Recursion comes from define not lambda! It is possible to define

recursive functions solely using lambda (and whatever primitive

operations exist in the language) but it is surprisingly hard. The

solution is called the Y-operator.

COMP 311, Fall 2023 7

Some PL researchers are crazy about !

Prof.

Phil Wadler

University of

Edinburgh

COMP 311, Fall 2023 8

Example

By using embedded lambda-abstraction, we can write

the following program concisely

(define l1 '(1 2 3 4 5))

(define l2

(local ((define (square x) (* x x)))

(map square l1)))

as

(define l1 '(1 2 3 4 5))

(define l2 (map (lambda (x) (* x x)) l))

COMP 311, Fall 2023 9

Careful Definition of Syntax

• Official specification of what expressions that

use lambda look like:

• exp = ... | (lambda (var*) exp)

• Interesting points

• In Racket/Scheme, may have multiple arguments

• May have have no arguments

• Application of a function with no arguments
(define blowup (lambda () (/ 1 0)))
(blowup)

COMP 311, Fall 2023 10

Currying: An Important Formulation of

Lambda Notation

• In the original formulation of the Lambda Calculus, lambda-abstraction was limited to a single

argument because every function

f: D1 … Dn → D

is isomorphic to a function

fc: D1 → … → Dn → D

eliminating the need for abstractions involving more than one variable. The function fc is

called the “curried” equivalent of f, in honor of Haskell Curry, who was prominent among the

small group of logicians who formalized a system of mathematical notation starting in the

1920s, called combinatory logic, in which functions are ordinary values. The originator of the

idea as recorded in the published literature was Moses Schönfinkel, a Russian logician and a

colleague of Hilbert who warrants more fame. (Perhaps “schönfinkeling” is too much of a

mouthful.)

Ironically, purely combinatory languages do not include lambda abstraction because they

dispense with variables. This is a convenient and common “mathematical hack” in formal

logic. Combinatory languages are not very intuitive. John Backus (the inventor of Fortran)

developed a purely combinatory language called FP but it included a syntactic hack to make

code more readable. I generalized essentially the same hack in my paper Lambda as a

Combinator, published in the Festschrift for John McCarthy.

COMP 311, Fall 2023 11

Currying: An Important Formulation of

Lambda Notation cont.

In contrast Racket supports multiple arguments including the option of no

arguments. In statically typed functional languages (like Ocaml and

Haskell) lambda-abstraction is typically limited to a single argument

implying that all functions are “curried”. In practice, this convention has

proven very convenient provided the parentheses around the argument in

a function application are dropped. Infix notation can be supported as

alternate notation for the full application of a curried binary function.

Check out the Haskell language at haskell.org. (Wisecrack: perhaps it

should called “Moses” instead of “Haskell”.)

A simple example of the curried formulation of a familiar function is curried

addition. In Racket, it can be defined by the lambda abstraction

(lambda (x) (lambda (y) (+ x y)))

http://www.haskell.org/

COMP 311, Fall 2023 12

Reduction Semantics

• Simple Reduction Semantics: Essence of Functional

Programming

• Idea: Evaluation of expressions is a familiar idea

from grammar school.

• Grammar school:

evaluate parenthesized arithmetic expressions

• Functional programming:

evaluate arbitrary (functional program) text

• Only significant difference: in reduction semantics,

reduction order is unique (required for determinism)

COMP 311, Fall 2023 13

Synopsis of Reduction

• Value are values are values …

• A value evaluates to itself so we stop

evaluation when we reduce our original

expression to a value.

• In most functional languages, always perform

leftmost reductions because order matters

COMP 311, Fall 2023 14

Evaluation of -expressions
• How do we evaluate a -abstraction

(lambda (x1 ... xn) body)

It's a value!

• What about -applications?

((lambda (x1 ... xn) body) v1 ... vn)

=> body[x1v1, ..., xnvn] (called -reduction)

Examples:

((lambda (x) (* x 5)) 4) => (* 4 5) => 20

((lambda (x) (x x)) (lambda (x) (x x)))

=> ((lambda (x) (x x)) (lambda (x) (x x)))

=> ((lambda (x) (x x)) (lambda (x) (x x)))

Note: body[x1v1, ..., xnvn] means body with v1 substituted

for x1, ..., vn substituted for xn.

The reduction

((lambda (x) (lambda (y) (y x)))

(lambda (z) (+ y z)))

=> (lambda (y) (y (lambda (z) (+ y z)))))

WRONG!

The meaning of y has changed! But this pathology (called the capture

of y) can never happen in the evaluation of Racket program text using

our evaluation rules provided lambda is the only binding construct. A

functional argument like
(lambda (z) (+ y z)))

with a free variable (y in our example) never appears as a value in a

reduction unless the free variable is defined in a top-level define. HW3

explores this issue in Problem 5.
COMP 311, Fall 2023 15

Problem with Raw Substitution

COMP 311, Fall 2023 16

Preventing Capture: Safe Substitution

We can avoid capturing a free variable (like y in our example) by renaming

local variables in the code body that would otherwise capture free

variables in the argument expression that is being substituted. Consider

the Racket program
(define y 5)

((lambda (f) ((lambda (y) (f y)) 10)) (lambda (z) (+ y z)))
=> ... [rename y to avoid capturing y; this step is typically combined with the next step]

((lambda (f) ((lambda (x) (f x)) 10)) (lambda (z) (+ y z)))
=> ...

((lambda (x) ((lambda (z) (+ y z)) 10))

=> ...

((lambda (z) (+ y z)) 10))

=> ...

(+ y 10)

=> ...

15

Avoiding Safe Substitution

Safe substitution is not mentioned in the evaluation rules given in

HTDP. As a result, the HTDP rules fail in pathological examples like

the one given on the previous slide.

Nevertheless, the DrRacket stepper computes the correct answer

because it distinguishes top-level usage occurrences (like y in the

example on the preceding slide) from embedded usage occurrences

(like y in our example). This distinction is ignored in the evaluation

rules given in HTDP, which only identifies binding and usage

occurrences of variables. We can fix this minor error in the HTDP

evaluation rules either by using “safe substitution” in the beta-

reduction rule (as in this class) or by introducing two different forms

of variable usage occurrences: references to embedded variables

(introduced in lambda and local define bindings). The DrRacket

stepper relies on the second fix.

COMP 311, Spring 2023 17

COMP 311, Fall 2023 18

Comprehensive Reduction Rules

• The document Laws Of Evaluation entitled Evaluating Core Racket

Programs is a comprehensive description of the reduction semantics

of functional Racket. In the literature, this form of semantics is often

called a “rewrite-rule” semantics. A similar system, with minor

technical differences, called Structural Operational Semantics, is

widely cited by computer science researchers (see Wikipedia!) but

regrettably is almost completely ignored in the documentation of

mainstream languages.

• As you see in HW3, you need to understand the rules in detail to

understand the corresponding programs.

https://wiki.rice.edu/confluence/download/attachments/40737407/NewLawsOfEval.pdf?api=v2

