
1

Lambda the Ultimate and

Reduction Semantics

Corky Cartwright

Department of Computer Science

Rice University

COMP 311, Fall 2022 2

Functions Are Values

• In most functional languages, functions are data values.
They can be
• bound to variables;

• returned as results from functions;

• dynamically constructed during computation just like ordinary data values,
but this process is clumsy without better notation that we have used so
far.

• Terminology
• A functional language where functions are not values is called a first-

order functional language. SISAL is such a language. Java is often called
a first-order language because methods are not data values.

• A functional language where functions are regular data values (as
described above) is called a higher-order functional language. Nearly all
modern functional languages are higher-order.

COMP 311, Fall 2022 3

Motivation for -notation

• Often, functions are used only once

• Examples: arguments to functions like
• map,

• filter,

• fold, and many more "higher-order" functions (functions that
take functions as arguments)

• Sometimes we want to build new functions in the middle
of a computation. The local construct suffices but it is
notationally clumsy for this purpose.

•  provides simpler, more concise notation

• Invented by Alonzo Church in the 1930s

COMP 311, Fall 2022 4

Basic Idea

• -notation was invented by mathematicians. For example, given

f (x) = x2 + 1

what is f? f is the function that maps x to x2 + 1 which we might

write as

x  x2 + 1

The latter avoids naming the function. The notation

 x . x2 + 1 evolved instead of x  x2 + 1

• In Scheme, we write (lambda (x) (+ (* x x) 1))) instead of

 x . x2 + 1.

• (define (f x) (+ (* x x) 1)) abbreviates
(define f (lambda (x) (+ (* x x) 1)))

COMP 311, Fall 2022 5

Why ?

• The name was used by its inventor

• Alonzo Church, logician, 1903-1995.

• Princeton, NJ

• Introduced lambda in 1930’s to

formalize mathematical proofs

• Church is my academic great-grandfather

Alonzo Church -> Hartley Rogers ->

David Luckham -> Corky Cartwright

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

COMP 311, Fall 2022 6

Scope for a Lambda Abstraction
• Argument scope: (lambda (x1 ... xn) body) introduces the

variables x1 ... Xn which have body as their scope (except for holes)

• Example:

(lambda (x) (+ (* x x) 1))

• Scope for variable introduced by define. At the top-level,

(define f rhs)

introduces the variable f which is visible everywhere (except inside

holes introduced by local definitions of f). Inside

(local [(define f1 rhs1) ... (define fn rhsn)) body)

• the variables f1 ... fn have the entire local as their scope.

• Recursion comes from define not lambda! It is possible to define

recursive functions solely using lambda (and whatever primitive

operations exist in the language) but it is surprisingly hard. The

solution is called the Y-operator.

COMP 311, Fall 2022 7

Some PL researchers are crazy about !

Prof.

Phil Wadler

University of

Edinburgh

COMP 311, Fall 2022 8

Example

Now we can write the following program concisely

(define l1 '(1 2 3 4 5))

(define l2

(local ((define (square x) (* x x)))

(map square l1)))

as

(define l1 '(1 2 3 4 5))

(define l2 (map (lambda (x) (* x x)) l))

COMP 311, Fall 2022 9

Careful Definition of Syntax

• Official specification of what expressions that

use lambda look like:

• exp = ... | (lambda (var*) exp)

• Interesting points

• In Racket/Scheme, may have multiple arguments

• May have have no arguments

• Application of a function with no arguments

• (define blowup (lambda () (/ 1 0)))
(blowup)

COMP 311, Fall 2022 10

Currying: An Important Formulation of

Lambda Notation

• In the original formulation of the Lambda Calculus, lambda abstraction was limited to

a single argument because every function

f: D1  …  Dn → D

is isomorphic to a function

fc: D1 → … → Dn → D

eliminating the need for abstractions involving more than one variable. The function

fc is called the “curried” equivalent of f, in honor of Haskell Curry, who was prominent

among the small group of logicians who formalized a system of mathematical

notation starting in the 1920s, called combinatory logic, in which functions are

ordinary values. The originator of the idea as recorded in the published literature

was Moses Schönfinkel, a Russian logician and a colleague of Hilbert who warrants

more fame. (Perhaps “schönfinkeling” is too much of a mouthful.)

Ironically, purely combinatory languages do not include lambda abstraction because

they dispense with variables. This is a convenient and common “mathematical hack”

in formal logic. Combinatory languages are not very intuitive. John Backus (the

inventor of Fortran) developed a purely combinatory language called FP but it

included a syntactic hack that I generalized in my paper Lambda as a Combinator.

COMP 311, Fall 2022 11

Currying: An Important Formulation of

Lambda Notation cont.

In contrast Racket supports multiple arguments including the

option of no arguments. In statically typed functional languages

(like Ocaml and Haskell) lambda abstraction is typically limited to a

single argument implying that all functions are “curried”. In

practice, this convention has proven very convenient provided the

parentheses around the argument in a function application are

dropped. Infix notation can be supported as alternate notation for

the full application of a curried binary function. Check out the

Haskell language at haskell.org. (Perhaps it should called “Moses”

instead of “Haskell”.)

A simple example of the curried formulation of a familiar function is

curried add. In Racket, it can be defined by the lambda abstraction

(lambda (x) (lambda (y) (+ x y)))

http://www.haskell.org/

COMP 311, Fall 2022 12

Reduction Semantics

• Simple Reduction Semantics: Essence of

Functional Programming

• Idea: Evaluation of expressions is a familiar idea

from grammar school.

• Grammar school:

evaluate parenthesized arithmetic expressions

• Functional programming:

evaluate arbitrary (functional program) text

COMP 311, Fall 2022 13

Synopsis of Reduction

• Value are values are values …

• A value evaluates to itself so we stop

evaluation when we reduce our original

expression to a value.

• In most functional languages, always perform

leftmost reductions because order matters

COMP 311, Fall 2022 14

Evaluation of -expressions

• How do we evaluate a -abstraction

(lambda (x1 ... xn) body)

It's a value!

• What about -applications?

((lambda (x1 ... xn) body) v1 ... vn)

=> body[x1v1 ... xnvn] (called -reduction)

Examples:

((lambda (x) (* x 5)) 4) => (* 4 5) => 20

((lambda (x) (x x)) (lambda (x) (x x)))

=> ((lambda (x) (x x)) (lambda (x) (x x)))

=> ((lambda (x) (x x)) (lambda (x) (x x)))

COMP 311, Fall 2022 15

Problem with Raw Substitution

…

((lambda (x) (lambda (y) (y x)))

(lambda (z) (+ y z)))

=> (lambda (y) (y (lambda (z) (+ y z)))))

WRONG!

The meaning of y has changed! But it can never

happen in the evaluation of Racket program text

provided lambda is the only binding construct.

Racket never reduces expressons inside a

lambda.

COMP 311, Fall 2022 16

Prevent Capture: Safe Substitution

• Must rename local variables in the code body that is being

modified by the substitution to avoid capturing free

variables in the argument expression that is being

substituted.

((lambda (x) (lambda (y) (y x))) (lambda (z) (+ y z)))

=> ((lambda (x) (lambda (f) (f x))) (lambda (z) (+ y z)))

=> (lambda (f) (f (lambda (z) (+ y z))))

• Only necessary when:
• Performing program transformations.

• Performing a beta-reduction body[x1v1 ... xnvn] where a

variable u bound by define appears in some vi and xi appears free

in body within a bound occurrence of a local variable named u.

COMP 311, Fall 2022 17

Comprehensive Reduction Rules

• The document Laws Of Evaluation entitled Evaluating

Core Racket Programs is a comprehensive description

of the reduction semantics of functional Racket. In the

literature, this form of semantics is often called a “rewrite-

rule” semantics. A similar system, with minor technical

differences, called Structural Operational Semantics is

widely cited by computer science researchers (see

Wikipedia!) but regrettably is almost completely ignored

in the documentation of mainstream languages.

• As you saw in HW3, you need to understand it in detail.

https://wiki.rice.edu/confluence/download/attachments/40737407/NewLawsOfEval.pdf?api=v2

