Lambda the Ultimate and Reduction Semantics

Corky Cartwright Department of Computer Science Rice University

Functions Are Values

- In most functional languages, functions are data values. They can be
- bound to variables;
- returned as results from functions;
- dynamically constructed during computation just like ordinary data values, but this process is clumsy without better notation that we have used so far.
- Terminology
- A functional language where functions are not values is called a firstorder functional language. SISAL is such a language. Java is often called a first-order language because methods are not data values.
- A functional language where functions are regular data values (as described above) is called a higher-order functional language. Nearly all modern functional languages are higher-order.

Motivation for λ-notation

- Often, functions are used only once
- Examples: arguments to functions like
- map,
- filter,
- fold, and many more "higher-order" functions (functions that take functions as arguments)
- Sometimes we want to build new functions in the middle of a computation. The local construct suffices but it is notationally clumsy for this purpose.
- λ provides simpler, more concise notation
- Invented by Alonzo Church in the 1930s

Basic Idea

- λ-notation was invented by mathematicians. For example, given $f(x)=x^{2}+1$ what is f ? f is the function that maps x to $x^{2}+1$ which we might write as

$$
x \rightarrow x^{2}+1
$$

The latter avoids naming the function. The notation
$\lambda x . x^{2}+1$ evolved instead of $x \rightarrow x^{2}+1$

- In Scheme, we write (lambda (x) (+ (* $\mathrm{x} \times \mathrm{x}) \mathrm{1})$)) instead of $\lambda \mathrm{x} . \mathrm{x}^{2}+1$.
(define (f x) (+ (* x x) 1)) abbreviates (define f (lambda (x) (+ (* x x) 1)))

Why λ ?

- The name was used by its inventor
- Alonzo Church, logician, 1903-1995.
- Princeton, NJ
- Introduced lambda in 1930's to formalize mathematical proofs
- Church is my academic great-grandfather Alonzo Church -> Hartley Rogers -> David Luckham -> Corky Cartwright

Scope for a Lambda Abstraction

- Argument scope: (lambda ($\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}$) body) introduces the variables $x_{1} \ldots x_{n}$ which have body as their scope (except for holes)
- Example:
(lambda (x) (+ (* x x) 1))
- Scope for variable introduced by define.
- At the top-level,
(define f rhs)
introduces the variable f which is visible everywhere (except inside holes introduced by local definitions of f, including lambda bindings .
- Inside the expression

```
(local [(define fr rhs }\mp@subsup{)}{1}{}\mathrm{ ) ... (define fin rhs n)) body)
```

- the variables $f_{1} \ldots f_{n}$ have the entire local expression as their scope.
- Recursion comes from define not lambda! It is possible to define recursive functions solely using lambda (and whatever primitive operations exist in the language) but it is surprisingly hard. The solution is called the Y -operator.

Some PL researchers are crazy about λ !

Prof.
 Phil Wadler University of Edinburgh

Example

By using embedded lambda-abstraction, we can write the following program concisely
(define l1 '(1 24345$)$)
(define 12
(local ((define (square x) (* x x)))
(map square l1)))
as
(define 11 '(1 $\left.2434 \begin{array}{lll}1\end{array}\right)$
(define 12 (map (lambda (x) (* x x)) l))

Careful Definition of Syntax

- Official specification of what expressions that use lambda look like:
- exp = ... | (lambda (var*) exp)
- Interesting points
- In Racket/Scheme, may have multiple arguments
- May have have no arguments
- Application of a function with no arguments
(define blowup (lambda () (/ 10)))
(blowup)

Currying: An Important Formulation of Lambda Notation

In the original formulation of the Lambda Calculus, lambda-abstraction was limited to a single argument because every function

$$
f: \mathrm{D}_{1} \times \ldots \times \mathrm{D}_{\mathrm{n}} \rightarrow \mathrm{D}
$$

is isomorphic to a function

$$
f_{c}: \mathrm{D}_{1} \rightarrow \ldots \rightarrow \mathrm{D}_{\mathrm{n}} \rightarrow \mathrm{D}
$$

eliminating the need for abstractions involving more than one variable. The function f_{c} is called the "curried" equivalent of t, in honor of Haskell Curry, who was prominent among the small group of logicians who formalized a system of mathematical notation starting in the 1920 s, called combinatory logic, in which functions are ordinary values. The originator of the idea as recorded in the published literature was Moses Schönfinkel, a Russian logician and a colleague of Hilbert who warrants more fame. (Perhaps "schönfinkeling" is too much of a mouthful.)
Ironically, purely combinatory languages do not include lambda abstraction because they dispense with variables. This is a convenient and common "mathematical hack" in formal logic. Combinatory languages are not very intuitive. John Backus (the inventor of Fortran) developed a purely combinatory language called FP but it included a syntactic hack to make code more readable. I generalized essentially the same hack in my paper Lambda as a Combinator, published in the Festschrift for John McCarthy.

Currying: An Important Formulation of Lambda Notation cont.

In contrast Racket supports multiple arguments including the option of no arguments. In statically typed functional languages (like Ocaml and Haskell) lambda-abstraction is typically limited to a single argument implying that all functions are "curried". In practice, this convention has proven very convenient provided the parentheses around the argument in a function application are dropped. Infix notation can be supported as alternate notation for the full application of a curried binary function.
Check out the Haskell language at haskell.org. (Wisecrack: perhaps it should called "Moses" instead of "Haskell".)
A simple example of the curried formulation of a familiar function is curried addition. In Racket, it can be defined by the lambda abstraction
(lambda (x) (lambda (y) (+ x y)))

Reduction Semantics

- Simple Reduction Semantics: Essence of Functional Programming
- Idea: Evaluation of expressions is a familiar idea from grammar school.
- Grammar school: evaluate parenthesized arithmetic expressions
- Functional programming: evaluate arbitrary (functional program) text

Synopsis of Reduction

- Value are values are values ...
- A value evaluates to itself so we stop evaluation when we reduce our original expression to a value.
- In most functional languages, always perform leftmost reductions because order matters

Evaluation of λ-expressions

How do we evaluate a λ-abstraction
(lambda ($\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}$) body)
It's a value!

- What about λ-applications?
((lambda ($\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}$) body) $\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{n}}$)
$\Rightarrow \operatorname{body}\left[x_{1} \leftarrow v_{1}, \ldots, x_{n} \leftarrow v_{n}\right] \quad$ (called β-reduction)
Examples:

```
        ((lambda (x) (* x 5)) 4) => (* 4 5) => 20
        ((lambda (x) (x x)) (lambda (x) (x x)))
=> ((lambda (x) (x x)) (lambda (x) (x x)))
=> ((lambda (x) (x x)) (lambda (x) (x x)))
```

Note: $\operatorname{body}\left[\mathrm{x}_{1} \leftarrow \mathrm{v}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \leftarrow \mathrm{v}_{\mathrm{n}}\right]$ means body with v_{1} substituted for x_{1}, \ldots, v_{n} substituted for x_{n}.

Problem with Raw Substitution

The reduction

WRONG!
The meaning of y has changed! But this pathology (called the capture of y) can never happen in the evaluation of Racket program text using our evaluation rules provided lambda is the only binding construct. A functional argument like
(lambda (z) (+y z)))
with a free variable (y in our example) never appears as a value in a reduction unless free variable is defined in a top-level define. HW3 explores this issue in Problem 5.

Preventing Capture: Safe Substitution

We can avoid capturing a free variable (like y in our example) by renaming local variables in the code body that would otherwise capture free variables in the argument expression that is being substituted. Consider the Racket program
(define y 5)
((lambda (f) ((lambda (y) (f y)) 10)) (lambda (z) (+ y z)))
=> ... [rename y to avoid capturing y; this step is typically combined with the next step]
((lambda (f) ((lambda (x) (f x)) 10)) (lambda (z) (+ y z))) => ...
((lambda (x) ((lambda (z) (+ y z)) 10)) =>...
((lambda (z) (+ y z)) 10))
=> ...
(+ y 10)
=> ...
15
COMP 311, Fall 2023

Avoiding Safe Substitution

Safe substitution is not mentioned in the evaluation rules given in HTDP. As a result, the HTDP rules fail in pathological examples like the one given on the previous slide.
Nevertheless, the DrRacket stepper computes the correct answer because it distinguishes top-level usage occurrences (like y in the example on the preceding slide) from embedded usage occurrences (like y in our example). This distinction is ignored in the evaluation rules given in HTDP, which only identifies binding and usage occurrences of variables. We can fix this minor error in the HTDP evaluation rules either by using "safe substitution" in the betareduction rule (as in this class) or by introducing two different forms of variable usage occurrences: references to embedded variables (introduced in lambda and local define bindings). The DrRacket stepper relies on the second fix.

Comprehensive Reduction Rules

The document Laws Of Evaluation entitled Evaluating Core Racket Programs is a comprehensive description of the reduction semantics of functional Racket. In the literature, this form of semantics is often called a "rewrite-rule" semantics. A similar system, with minor technical differences, called Structural Operational Semantics, is widely cited by computer science researchers (see Wikipedia!) but regrettably is almost completely ignored in the documentation of mainstream languages.

- As you see in HW3, you need to understand the rules in detail to understand the corresponding programs.

