
1

Functional Abstraction and Polymorphism

Corky Cartwright

Department of Computer Science

Rice University
(with thanks to John Greiner)

COMP 311, Fall 2023 2

Abstracting Designs

• The elimination of repetitions is the most
important step in the (program) editing
process – HTDP

• Software engineering term for revising a
program to make it better or accommodate an
extension: refactoring.

• Repeated code should be avoided at almost
all costs. Why? Revisions involving repeated
code are almost impossible to get right.

• Abstractions help us avoid this problem.

COMP 311, Fall 2023 3

The Need for Abstractions

;; contains-doll? : los -> boolean

;; to determine whether alos contains

;; the symbol 'doll

(define (contains-doll? alos)

(cond

[(empty? alos) false]

[else (or (symbol=? (first alos) 'doll)

(contains-doll? (rest alos)))]))

COMP 311, Fall 2023 4

The Need for Abstractions

;; contains-car? : los -> boolean

;; to determine whether alos contains

;; the symbol 'car

(define (contains-car? alos)

(cond

[(empty? alos) false]

[else (or (symbol=? (first alos) 'car)

(contains-car? (rest alos)))]))

COMP 311, Fall 2023 5

Creating Abstractions

How can we write one function that replaces

• contains-doll?

• contains-car?

• contains-pizza?

• contains-number?

• …

As we design code that embodies an abstraction (such as

containing a particular object), performing explicit type checks

blocks abstraction. Explicit type checking expressed as

executable code is a terrible software engineering idea! Why?

The type information to should be confirmed in a given invocation

depends on the context of the invocation!

COMP 311, Fall 2023 6

Creating Abstractions

;; contains? : symbol, los -> boolean

;; to determine whether alos contains

;; the symbol s

(define (contains? s alos)

(cond

[(empty? alos) false]

[else (or (symbol=? (first alos) s)

(contains? s (rest alos)))]))

COMP 311, Fall 2023 7

Creating Abstractions, cont.

;; contains? : any list -> boolean

;; (contains? v alist) determines whether

;; alist contains the value v

(define (contains? v alist)

(cond

[(empty? alist) false]

[else (or (equals? (first alist) v)

(contains? v (rest alist)))]))

Using generic (parametric typing), the correct type contract is:

;; contains? : (list-of T) -> boolean

Note that the “scope” of the type parameter T is the entire type expression

(list-of T) -> boolean

COMP 311, Fall 2023 8

Using Abstractions

• How do we use contains?

(contains? 'doll (list ...))
(contains? 'car (list ...))

• How can we better define contains-doll?, contains-car?

(define (contains-doll? alos) (contains? 'doll alos))
(define (contains-car? alos) (contains? 'car alos))

• This idea is called reuse. Let’s run with it!

COMP 311, Fall 2023 9

A more complex example

;; below : lon number -> lon

;; contract: to construct a list of those numbers

;; in alon that are less than or equal to t

(define (below alon t)

(cond [(empty? alon) empty]

[else

(cond [(<= (first alon) t)

(cons (first alon)

(below (rest alon) t))]

[else (below (rest alon) t)])]))

COMP 311, Fall 2023 10

A more complex example …

;; above : lon number -> lon

;; contract: to construct a list of those numbers

;; in alon that are greater than n

(define (above alon n)

(cond [(empty? alon) empty]

[else

(cond [(> (first alon) n)

(cons (first alon)

(above (rest alon) n))]

[else (above (rest alon) n)])]))

COMP 311, Fall 2023 11

Creating Abstractions

How can we write one function that replaces the

functions
• below

• above

• equal

• same-sign-as

• ...

COMP 311, Fall 2023 12

Creating Functional Abstractions

;; filter1: (number number -> boolean) (list-of number) number -> lon

;; contract: to construct a list of those numbers e in alon such that

;; (test e n) is true

(define (filter1 test alon n)

(cond [(empty? alon) empty]

[else

(cond [(test (first alon) n)

(cons (first alon)

(filter1 test (rest alon) n))]

[else (filter1 test (rest alon) n)])]))

What did we do? Use a function as an argument!

COMP 311, Fall 2023 13

Using Abstractions

• How do we denote (express) function values? Two ways: names and

lambda-abstractions. We will only use the first way for now: write the name

of a defined function (primitive, library, or program-defined) as in:
(filter1 <= (list ...) 0))

(filter1 > (list ...) 0))

• How can we define the functions above, below without code duplication?

(define (below alon n) (filter1 <= alon n))
(define (above alon n) (filter1 > alon n))

• Both functions will work just as before!

• Can we do better? The filter1 example is warped by assumptions that the input is

a (list-of number) and that the abstracted function is a binary relational operator The

standard filter operation that takes a unary predicate. This approach is simpler, but

it requires lambda-notation to express the function arguments in our examples!

COMP 311, Fall 2023 14

Repetition in Types

Repetition also happens in type definitions.

A lon is one of:

• empty

• (cons n alon)

where n is a number and alon is a lon.

A los is one of:

• empty

• (cons s alos)

where s is a symbol and alos is a los.

COMP 311, Fall 2023 15

Abstracting Types

In FP, called parametric polymorphism

In OOP, called genericity (generic types)

A (list-of T) is one of:

• empty

• (cons t alot)

where t is a T and alot is an (list-of T).

A variable at the type level.

COMP 311, Fall 2023 16

Abstracting Types

Important! (list-of X) is NOT the same type as
(list-of any). In some contexts, it is a sub-type.

Type Example(s)

(list-of number) (list 1 2 3)

(list-of symbol) (list 'a 'b 'pizza)

(list-of any) (list 1 2 3)
(list 'a 'b 'pizza)
empty
(list 1 'a +)

COMP 311, Fall 2023 17

Improving filter1

Can we generalize the type of filter1?
;; filter1: (number number -> boolean) (list-of number) number ->

;; (list-of number

What is special about number? Does filter1 rely on any

of the properties of number?

No. It could be any type X.

;; filter1 : (X X -> boolean) (list-of X) -> (list-of X)

Comment: filter1 is still lame. It should be unary:
;; filter : (X -> boolean) (list-of X) -> (list-of X)

COMP 311, Fall 2023 18

A Better Filter Function

;; filter: (T -> boolean) (list-of T) -> (list-of T)

;; contract: (filter f alot) constructs the (list-of T) consisting of all
;; elements e in alot such that (f e) is true. The ordering of elements
;; is preserved

(check-expect (filter number? empty) empty)

(check-expect (filter number? (list 1 false 2 true 3)) (list 1 2 3))

(define (filter f alot)

(cond [(empty? alot) empty]

[else

(cond [(f (first alot))

(cons (first alot)

(filter f (rest alot)))]

[else (filter f (rest alot))])]))

COMP 311, Fall 2023 19

Final thoughts

• Function abstraction adds expressiveness to a programming language

• Type abstraction (polymorphism) does the same for type annotations.

• They work well together, e.g. the ML family (OCAML, Haskell).

• Core Racket does not have static type system but we still use types

(homogeneous subsets of the data domain) informally in stating

contracts. A type declaration is a restricted form of contract!

• Function abstraction is very lightweight in Racket and other functional

languages. In contrast, it is rather clumsy and heavy-weight (both in

notation and implementation cost), but still important in Java; single

inheritance is not a general mechanism for expressing function

abstraction but it is notationally simpler in the cases where it is

applicable. Since Java 8, Java supports a clean form of multiple

inheritance via interfaces with concrete methods (code!). The default

method nomenclature is unfortunate.

