!'_ Functional Abstraction and Polymorphism

Corky Cartwright
Department of Computer Science

Rice University
(with thanks to John Greiner)

i Abstracting Designs

The elimination of repetitions is the most
|mportant step in the (program) editing
process — HTDP

. Software engineering term for revising a
program to make it better or accommodate an
extension: refactoring.

Repeated code should be avoided at almost
all costs. Why? Revisions involving repeated
code are almost impossible to get right.

. Abstractions help us avoid this problem.

COMP 311, Fall 2023 2

The Need for Abstractions

;3 contains-doll? : los -> boolean
;3 to determine whether alos contains
55 the symbol 'doll
(define (contains-doll? alos)
(cond
[(empty? alos) false]
[else (or (symbol=? (first alos) 'doll)
(contains-doll? (rest alos)))]))

COMP 311, Fall 2023

The Need for Abstractions

;3 contains-car? : los -> boolean
;3 to determine whether alos contains
53 the symbol '
(define (contains-car? alos)
(cond
[(empty? alos) false]
[else (or (symbol=? (first alos) 'car)
(contains-car? (rest alos)))]))

car

COMP 311, Fall 2023

Creating Abstractions

How can we write one function that replaces
contains-doll?
contains-car?
contains-pizza?
contains-number?

As we design code that embodies an abstraction (such as
containing a particular object), performing explicit type checks
blocks abstraction. Explicit type checking expressed as
executable code is a terrible software engineering idea! Why?
The type information to should be confirmed in a given invocation
depends on the context of the invocation!

COMP 311, Fall 2023 5

Creating Abstractions

;3 contains? : symbol, los -> boolean
;3 to determine whether alos contains
55 the symbol s
(define (contains? s alos)
(cond
[(empty? alos) false]
[else (or (symbol=? (first alos) s)
(contains? s (rest alos)))]))

COMP 311, Fall 2023

i Creating Abstractions, cont.

53 contains? : any list -> boolean
;5 (contains? v alist) determines whether
;3 alist contains the value v
(define (contains? v alist)
(cond
[(empty? alist) false]
[else (or (equals? (first alist) v)
(contains? v (rest alist)))]))

Using generic (parametric typing), the correct type contract is:
55 contains? : (list-of T) -> boolean

Note that the “scope” of the type parameter T is the entire type expression
(list-of T) -> boolean

COMP 311, Fall 2023 7

Using Abstractions

How do we use contains?

(contains? 'doll (list ...))
(contains? 'car (list ...))

How can we better defineé contains-doll?, contains-car?

(define (contains-doll? alos) (contains? 'doll alos))
(define (contains-car? alos) (contains? 'car alos))

This idea is called reuse. Let’s run with it!

COMP 311, Fall 2023 8

i A more complex example

53 below : lon number -> 1lon
;5 contract: to construct a list of those numbers
55 1in alon that are less than or equal to t
(define (below alon t)
(cond [(empty? alon) empty]
[else
(cond [(<= (first alon) t)
(cons (first alon)
(below (rest alon) t))]
[else (below (rest alon) t)])1))

COMP 311, Fall 2023

i A more complex example ...

55 above : lon number -> 1lon
55 contract: to construct a list of those numbers
55 in alon that are greater than n
(define (above alon n)
(cond [(empty? alon) empty]
[else
(cond [(> (first alon) n)
(cons (first alon)
(above (rest alon) n))]
[else (above (rest alon) n)])]))

COMP 311, Fall 2023 10

i Creating Abstractions

How can we write one function that replaces the

functions

. below

. above

. equal

. same-sign-as

COMP 311, Fall 2023 11

Creating Functional Abstractions

;5 filterl: (number number -> boolean) (list-of number) number -> 1lon
;3 contract: to construct a list of those numbers e in alon such that
;55 (test e n) is true
(define (filterl test alon n)

(cond [(empty? alon) empty]

[else
(cond [(test (first alon) n)
(cons (first alon)
(filterl test (rest alon) n))]
[else (filterl test (rest alon) n)])]))

What did we do? Use a function as an argument!

COMP 311, Fall 2023 12

i Using Abstractions

How do we denote (express) function values? Two ways: names and
lambda-abstractions. We will only use the first way for now: write the name

of a defined function (primitive, library, or program-defined) as in:
(filterl <= (list ...) 0))
(filterl > (list ...) 0))

How can we define the functions above, below without code duplication?

(define (below alon n) (filterl <= alon n))
(define (above alon n) (filterl > alon n))

Both functions will work just as before!

Can we do better? The filterl example is warped by assumptions that the input is
a (list-of number) and that the abstracted function is a binary relational operator The
standard filter operation that takes a unary predicate. This approach is simpler, but
it requires lambda-notation to express the function arguments in our examples!

COMP 311, Fall 2023 13

i Repetition In Types

Repetition also happens in type definitions.

/A lon IS one of: A
°* empty

* (cons n alon)

_ where n IS a number and alon IS a lon. -

A 1os is one of:)
°* empty
* (cons s alos)

_ where s IS a symbol and alos IS @ los. /

COMP 311, Fall 2023

14

i Abstracting Types

(A (list-of T) IS one of:)
°* empty
* (cons t alot)

_ where tis aTandalotis an (list-of T).

)

A variable at the type level.

In FP, called parametric polymorphism
In OOP, called genericity (generic types)

COMP 311, Fall 2023

15

i Abstracting Types

Type Example(s)
(list-of number) | (list 1 2 3)
(list-of symbol) |(list 'a 'b 'pizza)

(list-of any) (list 1 2 3)
(list 'a 'b 'pizza)
empty

(list 1 'a +)

Important! (1ist-of X) is NOT the same type as
(list-of any). In some contexts, it is a sub-type.

COMP 311, Fall 2023

i Improving filterl

Can we generalize the type of filter1?

;55 filterl: (number number -> boolean) (list-of number) number ->
HK (list-of number

What is special about number? Does filteri rely on any
of the properties of number?

No. It could be any type X.

53 filterl : (X X -> boolean) (list-of X) -> (list-of X)

Comment: filter1l is still lame. It should be unary:
5; filter : (X -> boolean) (list-of X) -> (list-of X)

COMP 311, Fall 2023 17

i A Better Filter Function

;55 filter: (T -> boolean) (list-of T) -> (list-of T)
;5 contract: (filter f alot) constructs the (list-of T) consisting of all

;5 elements e in alot such that (f e) is true. The ordering of elements
;3 1is preserved

(check-expect (filter number? empty) empty)
(check-expect (filter number? (list 1 false 2 true 3)) (list 1 2 3))

(define (filter f alot)
(cond [(empty? alot) empty]
[else
(cond [(f (first alot))
(cons (first alot)
(filter f (rest alot)))]
[else (filter f (rest alot))])]))

COMP 311, Fall 2023 18

Final thoughts

Function abstraction adds expressiveness to a programming language
Type abstraction (polymorphism) does the same for type annotations.
They work well together, e.g. the ML family (OCAML, Haskell).

Core Racket does not have static type system but we still use types
(homogeneous subsets of the data domain) informally in stating
contracts. Atype declaration is a restricted form of contract!

Function abstraction is very lightweight in Racket and other functional
languages. In contrast, it is rather clumsy and heavy-weight (both in
notation and implementation cost), but still important in Java; single
iInheritance is not a general mechanism for expressing function
abstraction but it is notationally simpler in the cases where it is
applicable. Since Java 8, Java supports a clean form of multiple
Inheritance via interfaces with concrete methods (code!). The default
method nomenclature is unfortunate.

COMP 311, Fall 2023

19

