
1

Functions as Values

Corky Cartwright

Department of Computer Science

Rice University

COMP 311, Fall 2022 2

Functional Abstraction

• A powerful tool

• Makes programs more concise

• Avoids redundancy

• Promotes “single point of control”

• Generally involves polymorphic
contracts (contracts containing type
variables) via type abstraction

• What we cover today for lists applies to
any recursive (self-referential) type

COMP 311 Fall 2022 3

Look for the repeated pattern

First function:
; add1Each : number-list -> number-list

; adds one to each number in list

(define (add1Each l)

(cond [(empty? l) empty]
[else

(cons (add1 (first l))

(add1Each (rest l)))]))

COMP 311, Fall 2022 4

Look for the pattern

Second function:
; notEach : boolean-list -> boolean-list

; complements each boolean in the list

(define (notEach l)

(cond [(empty? l) empty]

[else (cons (not (first l))

(notEach (rest l)))]))

COMP 311, Fall 2022 5

Codify the pattern

Abstracting with respect to add1, not, and the element

type X in the lists:

;; map : (X -> X), (list-of X) -> (list-of X)

;; applies f to each element in l

(define (map f l)

(cond [(empty? l) empty]

[else (cons (f (first l))

(map f (rest l)))]))

COMP 311, Fall 2022 6

Generalize the pattern

Do all occurrences of X in contract of map need to be of

the same type?

;; map : (X -> Y) X-list -> Y-list
;; contract: (map f l) returns the list consisting of f
;; applied to each element in l

(define (map f l)
(cond [(empty? l) empty]

[else (cons (f (first l))
(map f (rest l)))]))

COMP 311, Fall 2022 7

Tip on Generalizing Types

• When we generalize, we only replace

• specific types (like number or symbol)

• by type variables (like X or Y)

• We never replace a type by the any type,

which actually means

• number | boolean | number-list | boolean-list |

number -> number | . . .

• What goes wrong if we use any? We cannot

instantiate (bind) any to a specific type.

COMP 311, Fall 2022 8

Use the pattern

map can be used with any unary function.

• (map not l)

• (map sqrt l)

• (map length l)

• (map first l)

• (map symbol? l)

Note: Other recursive data types like various forms of

trees also have mapping operations, but they are not

generally in the Racket library. You must write them If

needed.

COMP 311, Fall 2022 9

More about map

• Powerful tool for parallel computing!

• Has elegant properties (from

mathematics):
• (map f (map g l)) = (map (compose f g) l)

• We have already seen how to define compose

• For fun: Checkout Google’s “map/reduce”

COMP 311, Fall 2022 10

Templates as functions

Recall the template for processing lists using structural

recursion:

; (define (list-fn l)

; (cond

; [(empty? l) ...]

; [else ... (first l)

; ... (list-fn (rest l))

; ...]))

Can we construct a function foldr that takes the "…" (which must be

constant) for empty? and the operation (function) "… … …" for else

as parameters init and op? Yes! The op parameter is a binary

function that takes (first l) and (list-fn (rest l)) as arguments.

Note that (list-fn (rest l)) is init when l has one element.

COMP 311, Fall 2022 11

Templates as functions

;; foldr: (s t -> t) t (list-of s) -> t
;; contract: given list l = (e1 ... en), (foldr op init l) =

;; (op e1 (op e2 ... (op en init) ...))

(define (foldr op init l)

(cond [(empty? l) init]

[else

(op (first l)

(foldr op init (rest l)))]))

• Infix formula for (foldr op init (list e1 ... en)) =

e1 op (e2 op ... (en op init))

• Often the types s and t are the same.

• Can we express all functions we’ve written instantiating our template using

foldr? Yes! Is there a foldl as well? Yes, but foldr is right-associative,

while foldl is left-associative which means the contract is slightly different.

• How can we compute foldl efficiently? (Hint: use tail recursion)

COMP 311, Fall 2022 12

map in terms of foldr

Can we write map in terms of foldr? Yes!

map : (X -> Y) (list-of X) -> (list-of Y)

Contract: given f: (X -> Y) and l = (list e1 ... en): (list-of Y),

(map f l) returns (list (f e1) ... (f en))

(define (map f l)
(foldr (lambda (x l) (cons (f x) l))

empty
l))

COMP 311, Fall 2022 13

Analysis of the Type of foldr

foldr: (X Y Y) Y (list-of X) Y

(foldr op init (list e1 .. en)) computes
(op e1 (.. (op en init) ..)) corresponding to
e1 op (.. (en op init) ..) in infix notation

Comments:

• The map example is confusing because Y is a list type.

• In (foldr op init l), l is a (list-of X), where X is determined

by the value of l. op is applied to (first l) and (foldr op init

(rest l)), implying op has inputs e1 and y of type X and Y.

• Connection to abstract algebra: if op is a group operation, then init

is the identity.

COMP 311, Fall 2022 14

Explication of foldl
;; foldl-help: (X Y Y) (list-of X) Y Y

;; Contract: given op, l = (list e1 ... en), and accum,

;; (foldl-help op l accum) = (op en (op en-1 ... (op e1 accum) ...))

;; = [in infix notation] ((... ((e1 op accum) op e2) ... op en-1) op en)

(define (foldl-help op l accum)

(if (empty? l) accum)

(foldl-help op (rest l) (op (first l) accum))))

;; foldl: (X Y Y) Y (list-of X) Y

;; Contract: given op, init, and l = (list e1 ... en),

;; (foldl op init l) = (op en (op en-1 ... (op e1 init) ...))

;; = [in infix notation] (e1 op ... (en-1 op (en op init)) ...)b

(define (foldl op init l) (foldl-help op l init))

Note: foldl-help above is identical to foldl except for argument order, so there

is no need for a help function. We can fuse init with accum

COMP 311, Fall 2022 15

Explication of foldl
;; foldl: (X Y Y) Y (list-of X) Y

;; Contract: given op, init, and l = (list e1 ... en),
;; (foldl op init l) returns (op e1 (.. (op en init) ..)), which is
;; e1 op (.. (en op init) ..) in infix notation

(define (foldl op init l)

(if (empty? l) init)

(foldl op (op (first l) init) (rest l)))))

;; Note that the second argument in the recursive call is an accumulator.

Comments:

• What a hack!

• The type of foldl is the same as the type of foldr. Why? The only difference

between foldr and foldl is the the association of the elements in the list l.

• Note: in some functional languages like Haskell, foldl reverses the order of the

arguments for the op parameter. I dislike this convention (it breaks the simple

connection between foldr and foldl) but Haskellites vigorously defend it.

COMP 311, Fall 2022 16

Example comparing foldr and foldl

Key Insight: foldl effectively uses a help function with an accumulator.

Payoff; the help function is tail-recursive which is much more space efficient in
processing long lists (constant space instead of linear space).

Constraint: since elements are processed in reverse order, the ordering of the
accumulated result is reversed. foldl is preferred to foldr when this change in
ordering does affect the correctness of app contracts. This condition clearly holds
when the binary function passed to the fold operation is associative. Similarly, in
bottom-up mergeSort, reversing the list of initial singleton lists is inconsequential.
The naïve coding of drop behaves catastrophically on long input lists.

Example:

;; drop: (list-of alpha) -> (list-of (list-of alpha))
(define (naïve-drop (loa) (foldr (lambda (e l) (cons (list e) l)) loa))
(define (opt-drop loa) (foldl (lambda (e l) (cons (list e) l)) loa))
(check-expect (naïve-drop ‘(1 2 3)) ‘((1) (2) (3)))
(check-expect (opt-drop ‘(1 2 3)) ‘((3) (2) (1)))

COMP 311, Fall 2022 17

What is equivalent direct code for opt-drop?

We can directly write efficient code for opt-drop by using a help function reverses
the ordering of the list forming the computed result.

;; drop-help: (list-of alpha) (list-of (list-of alpha)) -> (list-of (list-of alpha))

(define (drop-help loa accum)

(if (empty? loa) empty

(drop-help (rest loa) (cons (list (first loa)) accum))))

;; drop: alpha-list -> alpha-list-list

(define (opt-drop loa) (drop-help loa empty))

Alternatively
(define opt-drop (foldl (lambda (init e) (cons (list e)

(check-expect (opt-drop ‘(1 2 3)) ‘((3) (2) (1)))

Comparing foldr and foldl

• Efficiency: foldl is better both in space (where the difference is

enormous [small constant vs. linear!]) and time (where the

difference is modest because tail calls [jumps!] are cheaper to

execute than conventional function calls) at the cost of processing

the elements in reverse order. For very long input lists, foldr may

be unacceptable.

• Semantics: performing the aggregation operation (the function

parameter) in reverse order may or may not affect the answer. For

associative operations, by definition, it does not matter. But the

aggregation operations passed to foldr/foldl may not be

associative. For example, what happens to map if we use our

definition based on foldr and replace foldr with foldl? The

result list is reversed!

COMP 311, Fall 2022 18

