Evaluating Core Racket Programs

Corky Cartwright
Fall 2022

1 Syntax

We refer to the dialect of Racket used in class and the book as “Core Racket”. It is a subset of the
HTDP Intermediate Student with lambda language because it excludes all library functions except
those explicitly mentioned below. Recall that the syntax of Core Racket is constructed from atoms
and deep lists of atoms where an atom is either:

e a value which is a special Racket symbol that designating a data value, including various
forms of numbers (like 0, 1.5, #i1.0, 1+1i, #i1.0+1.01); single-quoted symbols (like A,
’x, *foo), boolean values (#true or #false); the empty list ’(); the essential primitive
functions on values including equals?, not, number?, exact?, inexact?, complex?, symbol?,
procedure? (which is true only for values that are functions), all math functions in the Racket
library (including relational operators on numbers such as =, <, and >), the primitive functions
associated with the built-in cons and empty structs and the additional primitive functions
associated with the built-in type lists, namely the functions 1ist? and list.

e a keyword which are is one of following Racket symbols (without a leading quote) define,
cond if, else, and, or, lambda, true, false, empty; or

e an identifier which is any symbol (without a leading single quote mark) that is not a keyword.

A Racket expression, is either a wvalue, an identifier, or a deep list of atoms that has one of the
following forms:

e a primitive application
(81 .o Sn)
where n > 0 and s; is a primitive function and s», ..., s, are Racket expressions;
e a conditional expression

(cond (p1 €1) ... (pn €n))

where n > 0 and pq, ..., p, are Racket expressions or the keyword else, and ey, ..., e, are
Racket expressions;

e an if-expression
(if e1 ey 63)
where eq, ea, and ez are Racket-expressions;

e an and-expression

(and e; e3)
where e; and es are Racket-expressions;
® an or-expression
(or ey e3)
where e; and es are Racket-expressions;
e a lambda-abstraction
(lambda vars body)
where var is a list (not a deep list) of unique identifiers and body is a Racket expression; and
e a general application
(f e1... en)
where n > 0 and f, ey, ..., e, are Racket expressions.
A Racket definition is
(define id e)

where id is an identifier and e is a Racket expression. The expression e is called the right-hand-side
of the definition.

A Racket program is a (possibly empty) sequence of Racket definitions followed by Racket-
expression e where (i) the right-hand sides of the definitions do not contain any free variables
other than the identifier defined in the program and (i) the Racket-expression e contains no free
variables other than the identifiers defined in the preceding block of Racket definitions.

1.1 Abbreviations

A few identifiers serve as abbreviations for values. In particular, the identifiers true, false, and
empty are abbreviations for the values #true, #false, > (), and ’ (), respectively. Similarly, #t
anand #f are abbreviations for #true and #false.

1.2 Notes on Racket Syntax:

1. The equal? function is unreliable on comparing two functions (Why?). Languages in the ML
family (Standard ML, OCaml, Haskell) use type checking to prevent such comparisons.

2. For any exact number z, the inexact value #ix is not the same as z. So the equal? function
distinguishes them. The binary function = only applies to numbers and its definition for inexact
arguments is subtle. (There is no simple way to handle such comparisons.)

3. We will not use the = function, inexact numbers, or complex numbers in Core Racket. We will
similarly avoid #t and #f.

1.3 Notational Conventions for Reduction Rules

Ttalicized meta-variables will stand for pieces of syntax within Racket programs as follows:
e F Ei, E,, ... will stand for expressions.
e B, V, W, potentially augmented by numerical subscripts, will stand for values.

e Lower-case letters like f, g, h, n, s, t, u, v, x, y, z, potentially augmented by numerical
subscripts, stand for variable names. Some examples of such meta-variables are f1, g2, h, n5.

e N is a non-negative integer.

A sequence of items like F; ... Ey indexed by consecutive integers beginning with 1, is empty if N
is 0.

We will typically use the (possibly subscripted) meta-variables f, g, and h to refer to variables
that are bound to functions and the meta-variables u, v, z, y, z to stand for variables that are bound
to data values that are not functions. Sometimes we need meta-variables to refer to variables that
can be bound to either functions or non-functions. We will try to mention when this situation can
arise.

Recall that the program to be evaluated consists a (possibly empty) sequence of definitions
followed by an expression constructed from program-defined and primitive functions and variables:

(define f; ...) ... (define fy ...) E

Also recall that the variables f; can be bound to either functions or non-functions. If the sequence
of definitions is empty, the program expression to be evaluated is degenerate in the sense there are
no program-defined variables.

1.4 Normalizing the Form of Definitions

In our reduction semantics for Core Racket, we interpret a function definition of the form
(define (f z1, ... zn) E)

to be an abbreviation for the variable definition
(define f ((lambda (x7 ... xzn) E)

The Racket compiler literally generates exactly the same code for each definition.

2 Expression Evaluation

Evaluating an expression means finding a value for that expression. We use a step-by-step process
to repeatedly simplify an expression until it is so simple that it is a value. Evaluating—/ a program
means repeatedly evaluating the leftmost reducible or “stuck” sub-expression (any expression within
the program). A “stuck” expression is one that cannot be reduced—even if all of its arguments are
reduced to values, yet the irreducible expression is not a value. In a minimalist reduction semantics,
error-generating sub-expressions are simply left as irreducible. Such a semantics could be completed
by adding a collection of error values and adding rules for every expression form (including every
primitive function) to propagate these errors to the top level where they are reported as aborting
errors. But such a semantics would have far more rules than the minimalist alternative.

2.1 Stuck Expressions

Some syntactically well-formed Core Racket expressions, such as (+ ’a 2), (first empty), (1 2),
and (/ 1 0), do not have a value according to our reduction rules because there is no reduction
law that matches such an expression. For this reason, we say that evaluation of such expressions
“sticks”, which is a very simple, approach to formalizing the notion of a run-time error.

A stuck sub-expression is one where the arguments do not have the proper form to support
a reduction step. A good example in most languages (including Racket) is division-by-zero. The
expression

(/ 10)

cannot be reduced to a value and all of its arguments are values, so it is “stuck”. If it occurs in
leftmost reducible position, the program aborts. It is possible for an expression containing a control
operation (cond, if, and, or in Core Racket) to have a stuck sub-expression without sticking on
that stuck state. For example, the expression

(if true then 1 else (/ 1 0))

contains the stuck sub-expression (/ 1 0) but it reduces to true (abbreviating #true) because the
stuck sub-expression never reaches leftmost reducible position.

In practice, run-time errors are easy to detect in manual Racket program evaluations because
the leftmost sub-expression in position to be reduced is stuck.

2.2 The Reduction Laws

A law of the foom P = @ where P and @ are program fragments (expressions or sequences
of expressions) means that P and @ have the same behavior; one can be substituted for the other
without changing the meaning of the program. Hence, = means exactly what it means in high
school algebra. In addition, every law P = (@ has the property that @ is closer (measured in
remaining reduction steps) to a value for P (assuming one exists) than P.

2.3 Values are values, are values, ...

Values are the answers produced by computations. Every value is also an expression, but it cannot
be reduced because it is an answer.
Some examples are:

Value Kind of Value
0 number (exact)
1/3 number (exact)

0.3333333333333333
6.023e23

true

false

’piston

"Racket"

empty

(cons ’a empty)
(1ist 6 120)

+

(lambda (x) (+ x y))

(
number (inexact)
number (inexact)
boolean
boolean
symbol
string
list
list
list
built-in function (primitive operation)

user-defined function (lambda expression)

bf Notes:

1. In nearly all functional languages, functions are values just like numbers are. The most common
notation for functions as values are lambda-abstractions. More pedestrian languages do not
view functions as values, forcing workarounds like representing functions explicitly as objects
in Java.

2. In our hand-evaluations, no distinction is made between list abbreviations and the correspond-
ing list construction using the list function. Hence, (1ist) is another way to write empty.
Similarly no distinction is made and between true (false) and #true (#false). They all are
values.

2.4 Conditionals
2.4.1 The Laws of if

When the test of an if expression is a value, the next step depends on whether the value is true
or false. (If any other value appears in the test position for an if expression, that expression is a
“stuck state”.)

(if true Eo Eg) — Fs
(if false Fy Eg) = Fj

2.4.2 The Laws of cond

When the test of the first clause in a cond is a value, the next step depends on whether the value is
true or false. Let W be any value that is not a boolean.

(cond [false E]...) = (cond...)
(cond [true E]...) = E

(cond [else E]...) = F

(cond [W E] ..) is a stuck state
(cond) is a stuck state

In the absence of errors or non-termination, evaluation of a cond expression should result in
selection of one of the clauses (and evaluation of its consequent expression.)
Here are some examples:

(cond [(> 10 12) (+ 7 8)] [else (*x 6 4)]) = (cond [false (+ 7 8)] [else
(x 6 4)1)
—> (cond [else (x 6 4)])
= (*x 6 4)
(cond [true (+ 7 8)] [else (x 6 4)]) = (+ 7 8)
(cond [’foo (+ 7 8)] [else (*x 6 4)]) = (+ 7 8)

2.4.3 The Laws of or and and

Let E be an arbitrary expression, B be an arbirary boolean value, and W is an value that is not a
boolean. Then

(or true £) = true

(or false B) = B

(or false W) is a stuck state (and false F) = false
(and true B) = B (and true W) is a stuck state

2.5 The Laws of Application

Given an application consisting of values
Oy Vo oo V)

(where V7 must be primitive function or a lambda-abstraction) we apply different laws depending
on whether the head value V; is a primitive function or a a lambda-abstraction. If the head value
is not a function, the application is “stuck”. Some “stuck” expressions are (1 2), (1), and ((cons
’a empty) empty).

2.5.1 Primitive applications

There is a large table of laws for directly reducing to a value the application of a primitive to a set of
values. You know many of these rules from grammar school; the remainder are described (implicitly)
in the course lecture notes and Racket Help Desk embedded in DrRacket. If you are uncertain about
a result in the table, use the DrRacket Intermediate Student with lambda dialect to evaluate
it. If you suspect an operation is primitive but do not know its name in Racket, ask a question on
Piazza or try to find using the Racket Help Desk.

For instance, if U, Uy ..., U, are values, V is a list value, and W is a non-list value, then:

(first (cons U V)) = U

(first (Qist Uy ... U,)) = U

(rest (consUV)) = V

(rest (List Uy ... Up))) = (@1ist] Uz ... Up)
(cons? (cons U V)) — true

(1ist? (cons U V)) =— true

(cons? W) = false

(1ist?) W) = false

Examples:

(first (cons 1 empty)) =— 1
(rest (cons 1 empty)) = empty
(cons? 1) = false

(cons? (cons 1 empty)) = true
+12) = 3

If a primitive operation is applied to illegal inputs, then the primitive application is stuck. Some
sticking expressions are (first empty), (rest 1), and (+ empty 2). A stuck expression is a
special form of reducible expression that aborts the computation with an error message describing
why the application is illegal.

2.5.2 lambda Applications
If the head value in an application is a lambda expression

(lambda (z1 ... zn) E)

where x1, ..., £y are variable names and F is an expression, then the following rule specifies a
potential next step in evaluating the application:.

((lambda (1’1 .’tN) E) Vi... VN) - E‘[V1 for 21]. . .[Viv for]

where the notation Ejy ., ;) means E with all free occurrences! of variables in & safely replaced by
the corresponding values in V. Obviously Z and V must have the same arity N.

This rule is a special case of the most famous reduction-rule in the lambda-calculus called beta-
reduction, which is identical except that it does not restrict the argument expressions V; ... Vy to
values. Our restriction is often called beta-value-reduction. In the reduction semantics for Racket,
all of the substitutions performed in beta-value-reduction steps, except for one rare corner case
discussed in Section 3.1, are safe.

3 Evaluating definitions

The preceding section gives laws for evaluating Scheme expressions in the absence of program defi-
nitions. But Scheme programs have the form

(define n; E7)
(define no E5)

(define ny En)

E
where ni, ns, ..., ny are names and Eq, Fs, ..., Ey, E are expressions using Scheme primitives
and the defined names ny, no, ..., ny. The expression E is called the body of the program and

each expression Ey, is called the body of the definition (define ny Ej).
If the definition bodies E}, are all values

(define n; Vi)
(define ny V5)

(define ny Vy)
E

then we evaluate the expression F as described above with the added provision that the names nq,
na, ..., ny have values Vi, V;, ..., Vi, respectively. This situation prevails if all top-level define
constructs bind variables to functions denoted by lambda-expressions. Hence, the only Racket
programs that require evaluating the right-hand sides of define constructs are those with definitions
(in the form of define constructs) that bind variables to expressions that are not functions! These
right-hand-sides are reduced in sequential (leftmost) order.

These laws force us to evaluate the bodies of all definitions in sequential order before evaluating
the body of the program. Note that the body of a program with a prefix that is a sequence of define
declarations may contain variables that are free in the body. Their bindings must be provided by
preceding define declarations; otherwise the program would be ill-formed because some variables
would be free with respect to the entire program. DrRacket checks for such free variables before
attempting to evaluate a program. Of course, such checking could be deferred and performed during
program evaluation, but this convention is generally considered bad form on the part of the language
implementors.

LAn occurrence of a variable is a binding occurrence if it appears as the variable defined in a Racket define
construct or a parameter in a lambda-expression. A variable occurrence that is not a binding occurrence is called
a use occurrence. In practice, most variable occurrences are use occurrences. A use occurrence of a variable is free
within a particular program fragment P (expression or whole program) iff it is not enclosed by a binding occurrence
of the same variable name in P.

3.1 Safe Substitution in Racket Programs

The only case where unsafe substitutions can occur in the reduction semantics for Racket appears in
the context of reducing programs with definitions. This case is rare but understanding the possible
pathologies in general beta-reduction is important, because beta-reduction is a very common opti-
mizing transformation (often called ”inlining”) performed by programmers during program devel-
opment and by optimizing compilers in generating efficient machine code. The reduction semantics
for Racket deftly avoids these pathologies except in one special case.

The potential pathologies in substitution can be systematically eliminated by using a process
called safe substitution, which is an elaboration of ordinary (sometimes called "raw”) substitution. In
reducing Racket programs to answers, we can simply use raw substitution, except for one pathological
case that rarely occurs in real programs, which will discuss now.

In the safe substitution E}y q, . variables bound variables within £ must be renamed if they clash
with free variables in Vi,...,Vxy. This anomaly is called capturing free variables and it is the bane
of existence for logicians and programming language theorists. Many formal systems proposed for
reasoning about mathematical domains and programs have failed to prevent this pathology, breaking
the soundness (correctness) of those systems.

The concept of capturing a free occurrence of a variable sounds obscure but it is actually very
intuitive. It can only happen in transforming a program text in Racket (or other programming
languages) if there are multiple variables with the same name. Every binding occurrence of a variable
x has a scope, which is simply the portion of the program text where that binding is active (visible).
If the expression N that is being substituted for a variable y contains an occurrence of a free variable
z then the meaning of the variable z will change after the substitution if the binding occurrence
corresponding to the occurrence of z changes as a result of the substitution. If an occurrence of the
"target” variable z; being replaced occurs in within the scope of a binding occurrence of z, capture
happens! Fortunately, this event never happens in the reduction process in Racket except for one
obscure corner case was overlooked by the authors of HTDP. If the binding occurrence of a variable x
is a top-level define statement in the program being reduced, free occurrences of a different variable
named x can be captured by the top-level binding. The last example in the block of examples below
shows this rare pathology.

On the other hand, capture can easily happen when a function application is expanded ”in
line” to eliminate the overhead of the function call and perhaps enable more optimization. Such
transformations are commonly performed as part of the program development process. They are also
increasingly used in highly optimizing compilers. A good way to prevent ”capture” from possibly
happening is to avoid introducing a new binding occurrence of a variable x within the scope of
another variable with the same name x. Compilers typically use a form of notation for variable
occurrences (called static distance representation) that makes every variable name unique within
any given context eliminating the possibility of capturing free variables.

Study the following instances of beta-value-reduction (as performed in the reduction semantics
for Racket) carefully.

Examples:
e ((lambda (x) (+ x x)) 7) = (+ 7 7)

. ((lambda (f) (lambda (x) (f (f x)))) (lambda (y) (+ x y)))
=~ (lambda (x) ((lambda (y) (+ x y)) ((lambda (y) (+ x y)) x)))

. ((lambda (£) (lambda (x) (£ (f x)))) (lambda (y) (+ x y)))
= (lambda (z) ((lambda (y) (+ x y)) ((lambda (y) (+ x y)) 2)))

e (define free 17)
((((lambda (x) (lambda (free) x)) (lambda (y) free)) 0) 0)

N

(define free 17)
(((lambda (free) (lambda (y) free)) 0) 0) =— O

e (define free 17)
((((lambda (x) (lambda (free) x)) (lambda (y) free)) 0) 0)
BN
(define free 17)
(((lambda (freel) (lambda (y) free)) 0) 0) =— 17

3.2 Rules for define-struct

For the sake of simplicity (and sanity), we will assume that all of the define-struct definitions
for a program appear in a prelude that is preprocessed to augment the set of program values and
primitive functions. Every define-struct definition

(define-struct n (n; ... ng))

simply augments the primitive operations of Racket by the k-ary constructor make-n, the unary
boolean function n?, and the accessors n-nj, ..., n-ng. Hence, the Racket program following
such a prelude is evaluated like any other Racket program except of the expanded set of primitive
operations.

3.3 Rules for local

To evaluate programs containing local, we need to introduce the concept of promotion (also called
flattening). Given an expression of the form

(local [(define n; E4) ... (define ny En)] E)

we first convert the local definitions of the names nq,...,ny to global definitions of new names
nf,...,nly, renaming all bound occurrences of ny,...,ny. Then we evaluate the transformed ex-
pression E in the context of the new definitions. This conversion process is called the promotion
or flattening of a local expression. The new names nj,...,n,y must be chosen so that they are
distinct from all other names in the program.

Let

(define ny V7)

(define ng_1 Vi)
F

be a program where the program body F has the form
C[L]
where L is an expression
(local [(define n; Ej) ... (define ny EnN)] E)

enclosed in the surrounding program text C[] to form the expression F. Assume that no subexpres-
sions in E to the left of the subexpression L can be reduced. Hence, L is the leftmost expression
in the entire program that can be reduced. In this case, the surrounding text C[] is called the
evaluation context of L.

Using the notation introduced above, we can describe the promotion step reducing the program
by the following rule:

(define nqy V1)

('define ng_1 VN)
C[(local [(define n; FEj) ... (define ny En)] E)]

=
(define n; Vi)

(define ni_1 Vn)
(define n/l El [n] for n1] ... [0y for nN])
(define 7749\/' E‘N[n’1 for n1] ..

. [y for nN])
C[E1[n’1 for n1] ... [n)y for ny]

In other words, we replaced L by the body of L with nq,...,ny renamed and we added appropri-
ate definitions for the new names in the sequence of define statements preceding the program body.
Note that free occurrences of the names nq, ..., ny must be renamed in the expressions E1, ..., Ey,
as well as F.

In practice, the rules for reducing local are rather messy so none of our examples will involve using
these rules. The key take-away here is that constructions built using local have a straightforward
meaning that is simple in principle if messy in practice.

10

