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1 Introduction

Parallel computing has become firmly established since the 1980’s as the pri-
mary means of achieving high performance from supercomputers. 1 Concur-
rent Collections (CnC) was developed to address the need for making parallel
programming accessible to non-professional programmers.

One approach that has historically addressed this problem is the creation
of domain specific languages (DSLs) that hide the details of parallelism when
programming for a specific application domain. In contrast, CnC is a model
for adding parallelism to any host language (which is typically serial and
may be a DSL). In this approach, the parallel implementation details of the
application are hidden from the domain expert, but are instead addressed
separately by users (and tools) that serve the role of tuning experts. The
basic concepts of CnC are widely applicable. Its premise is that domain
experts can identify the intrinsic data dependences and control dependences
in an application, irrespective of lower-level implementation choices. The
dependences are specified in a CnC graph for an application. Parallelism is
implicit in a CnC graph. A CnC graph has a deterministic semantics, in
that all executions are guaranteed to produce the same output state for the
same input. This deterministic semantics and the separation of concerns
between the domain and tuning experts are the primary characteristics that
differentiate CnC from other parallel programming models.

2 Description

Concurrent Collections (CnC) is a parallel programming model, with an exe-
cution semantics that is influenced by dynamic dataflow, stream-processing,
and tuple spaces. The model is built on past work done at Hewlett Packard
Labs on TStreams, described in [15]. The three main constructs in the CnC
programming model are step collections, data collections, and control col-
lections. A step collection corresponds to a computation, and its instances
correspond to invocations of that computation that consume and produce
data items. A data collection corresponds to a set of data items, indexed by
item tags, that can be accessed via put and get operations; once put, data
items cannot be overwritten, they are required to be immutable. A control

1This report is based on a chapter of the Encyclopedia of Parallel Computing, published
by Springer (Editor-in-Chief David Padua).
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collection corresponds to a factory [8] for step instances. A put operation on
a control collection with a control tag results in the prescription (creation)
of step instances from one or more step collections with that tag passed as
an input argument. These collections and their relationships are defined
statically as a CnC graph in which a node corresponds to a step, data or
item collection, and a directed edge corresponds to a put, get, or prescribe
operation.

CnC specification graph The three main constructs in a CnC specifica-
tion graph are step collections, data collections, and control collections. These
collections and their relationships are defined statically. But for each static
collection, a set of dynamic instances is created as the program executes.

A step collection corresponds to a specific computation, and its instances
correspond to invocations of that computation with different input argu-
ments. A control collection is said to control a step collection—adding an
instance to the control collection prescribes one or more step instances i.e.,
causes the step instances to eventually execute when their inputs become
available. The invoked step may continue execution by adding instances to
other control collections, and so on.

Steps also dynamically read (get) and write (put) data instances. The
execution order of step instances is constrained only by their producer and
consumer relationships, including control relations. A complete CnC spec-
ification is a graph where the nodes can be either step, data, or control
collections, and the edges represent producer, consumer and control relation-
ships.

A whole CnC program includes the specification, the step code and the en-
vironment. Step code implements the computations within individual graph
nodes, whereas the environment is the external user code that invokes and in-
teracts with the CnC graph while it executes. The environment can produce
data and control instances. It can consume data instances and use control
instances to prescribe conditional execution.

Within each collection, control, data, and step instances are each iden-
tified by a unique tag. In most CnC implementations, tags may be of any
data type that supports an equality test and hash function. Typically, tags
have a specific meaning within the application. For example, they may be
tuples of integers modeling an iteration space (i.e. the iterations of a nested
loop structure). Tags can also be points in non-grid spaces—nodes in a tree,
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in an irregular mesh, elements of a set, etc. Collections use tags as follows:

• A step begins execution with one input argument—the tag indexing
that step instance. The tag argument contains the information neces-
sary to compute the tags of all the step’s input and output data. For
example, in a stencil computation a tag “i,j” would be used to access
data at positions “i+1,j+1”, “i-1,j-i” and so on. In a CnC specifi-
cation file a step collection is written (foo) and the components of its
tag indices can optionally be documented, as in (foo: row, col).

• Putting a tag into a control collection will cause the corresponding
steps (in all controlled step collections) to eventually execute when
their inputs become available. A control collection C is denoted as <C>
or as <C:x,y,z>, where x, y, z comprise the tag. Instances of a control
collection contain no information except their tag, so the word “tag” is
often used synonymously with “control instance”.

• A data collection is an associative container indexed by tags. The
contents indexed by a tag i, once written, cannot be overwritten (dy-
namic single assignment). The immutability of entries within a data
collection, along with other features, provides determinism. In a speci-
fication file a data collection is referred to with square-bracket syntax:
[x:i,j].

Using the above syntax, together with :: and → for denoting prescrip-
tion and production/consumption relations, we can write CnC specifications
that describe CnC graphs. For example, below is an example snippet of a
CnC specification showing all of the syntax.

// control relationship: myCtrl prescribes instances of myStep

<myCtrl> :: (myStep);

// myStep gets items from myData, and puts tags in myCtrl and items in myData

[myData] → (myStep) → <myCtrl>, [myData];

Further, in addition to describing the graph structure, we might choose to
use the CnC specification to document the relationship between tag indices:

[myData: i] → (myStep: i) → <myCtrl: i+1>, [myData: i+1];
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Model execution During execution, the state of a CnC program is defined
by attributes of step, data, and control instances. (These attributes are
not directly visible to the CnC programmer.) Data instances and control
instances each have an attribute Avail, which has the value true if and only
if a put operation has been performed on it. A data instance also has a Value
attribute representing the value assigned to it where Avail is true. When the
set of all data instances to be consumed by a step instance and the control
instance that prescribes a step instance have Avail attribute value true, then
the value of the step instance attribute Enabled is set to true. A step instance
has an attribute Done, which has the value true if and only if all of its put
operations have been performed.

Instances acquire attribute values monotonically during execution. For
example, once an attribute assumes the value true, it remains true unless an
execution error occurs, in which case all attribute values become undefined.
Once the Value attribute of a data instance has been set to a value through a
put operation, assigning it a subsequent value through another put operation
produces an execution error, by the single assignment rule. The monotonic
assumption of attribute values simplifies program understanding, formulating
and understanding the program semantics, and is necessary for deterministic
execution.

Given a complete CnC specification, the tuning expert maps the specifi-
cation to a specific target architecture, creating an efficient schedule. This
is quite different from the more common approach of embedding parallel
constructs within serial code. Tag functions provide a tuning expert with
additional information needed to map the application to a parallel archi-
tecture, and for static analysis they provide information needed to optimize
distribution and scheduling of the application.

Example The following simple example illustrates the task and data par-
allel capabilities of CnC. This application takes a set (or stream) of strings
as input. Each string is split into words (separated by spaces). Each word
then passes through a second phase of processing that, in this case, puts it
in uppercase form.
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(splitString) (uppercase)[words]

<stringTags>

[inputs]

<wordTags>

[results]

env

env

env

Figure 1: A CnC graph as described by a CnC specification. By convention,
in the graphical notation specific shapes correspond to control, data, and
step collections. Dotted edges represent prescription (control/step relations),
and arrows represent production and consumption of data. Squiggly edges
represent communication with the environment (the program outside of CnC)
.

<stringTags> :: (splitString); // step 1

<wordTags> :: (uppercaseWord); // step 2

// The environment produces initial inputs and retrieves results:

env → <stringTags>, [inputs];
env ← [results];
// Here are the producer/consumer relations for both steps:

[inputs] → (splitString) → <wordTags>, [words];
[words] → (uppercaseWord) → [results];

The above text corresponds directly to the graph in Figure 1. Note that
separate strings in [input] can be processed independently (data paral-
lelism), and, further, the (splitString) and (uppercase) steps may oper-
ate simultaneously (task parallelism).

The only keyword in the CnC specification language is env, which refers
to the environment—the world outside CnC, for example, other threads or
processes written in a serial language. The strings passed into CnC from the
environment are placed into [inputs] using any unique identifier as a tag.
The elements of [inputs] may be provided in any order or in parallel. Each
string, when split, produces an arbitrary number of words. These per-string
outputs can be numbered 1 through N—a pair containing this number and
the original string ID serves as a globally unique tag for all output words.
Thus, in the specification we could annotate the collections with tag com-
ponents indicating the pair structure of word tags: e.g. (uppercaseWord:
stringID, wordNum).
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// The execute method ‘‘fires’’ when a tag is available.

// The context c represents the CnC graph containin item and tag collections.

int splitString::execute(const int & t, partStr context & c ) const
{

// Get input string

string in;
c.input.get(t, in);

// Use C++ standard template library to extract words:

istringstream iss(in);
vector<string> words;
copy(istream iterator<string>(iss),

istream iterator<string>(),
back inserter<vector<string> >(words));

// Finally, put words into an output item collection:

for(int i=0; i < words.size(); i++) {
pair<int,int> wtag(t,i);
c.wordTags.put( wtag );
c.words.put( wtag, words[i]);

}
return CnC::CNC Success;

}

// Convert word to upper case form:

int uppercaseWord::execute(const pair<int,int> & t, partStr context & c ) const
{

string word;
c.words.get(t, word);
strUpper(word);
c.results.put(t, word);
return CnC::CNC Success;

}

int main()
{

partStr context c;
for(...)
c.input.put(t, string); // Provide initial inputs

c.wait(); // Wait for all steps to finish

... // Print results

}

Figure 2: C++ code implementing steps and environment. Together with a
CnC specification file the above forms a complete application.
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Figure 2 contains C++ code implementing the steps splitString and
uppercase. The step implementations, specification file, and code for the
environment together make up a complete CnC application. Current imple-
mentations of CnC vary as to whether the specification file is required, can be
constructed graphically, or can be conveyed in the host language code itself
through an API.

3 Mapping to Target Platforms

There is wide latitude in mapping CnC to different platforms. For each there
are several issues to be addressed: grain size, mapping data instances to
memory locations, steps to processing elements, and scheduling steps within
a processing element. A number of distinct implementations are possible
for both distributed and shared memory target platforms, including static,
dynamic, or a hybrid of static/dynamic systems with respect to the above
choices.

The way an application is mapped will determine its execution time,
memory, power, latency, and bandwidth utilization on a target platform. The
mappings are specified as part of the static translation and compilation as
well as dynamic scheduling of a CnC program. In dynamic run-time systems,
the mappings are influenced through scheduling strategies, such as LIFO,
FIFO, work-stealing, or priority-based.

Implementations of CnC typically provide a translator and a run-time
system. The translator uses a CnC specification to generate code for a run-
time system API in the target language. As of the writing of this article,
there are known CnC implementations for C++ (based on Intel’s Threading
Building Blocks), Java (based on Java Concurrency Utilities), .NET (based
on .NET Task Parallel Library), and Haskell.

Step Execution and Data Puts and Gets: There is much leeway in
CnC implementation, but in all implementations, step prescription involves
creation of an internal data structure representing the step to be executed.
Parallel tasks can be spawned eagerly upon prescription, or delayed until the
data needed by the task is ready. The get operations on a data collection
could be blocking (in cases when the task executing the step is to be spawned
before all the inputs for the step are available) or non-blocking (the run-time
system guarantees that the data is available when get is executed). Both
the C++ and Java implementations have a roll-back and replay policy, which
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aborts the step performing a get on an unavailable data item and puts the
step in a separate list associated with the failed get. When a corresponding
put is executed, all the steps in a list waiting on that item are restarted. The
Java implementation also has a “delayed async” policy [1], which requires the
user or the translator to provide a boolean ready() method that evaluates to
true once all the inputs required by the step are available. Only when ready()
for a given step evaluates to true does the Java implementation spawn a task
to execute the step.

Initialization and Shutdown: All implementations require some code
for initialization of the CnC graph: creating step objects and a graph object,
as well as performing the initial puts into the data and control collections.

In the C++ implementation, ensuring that all the steps in the graph have
finished execution is done by calling the run() method on the graph object,
which blocks until all runnable steps in the program have completed. In the
Java implementation, ensuring that all the steps in the graph have completed
is done by enclosing all the control collection puts from the environment
in a Habanero-Java finish construct [13], which ensures that all transitively
spawned tasks have completed.

Safety properties: In addition to the differences between step imple-
mentation languages, different CnC implementations enforce the CnC graph
properties differently. All implementations perform run-time system checks
of the single assignment rule, while the Java and .NET implementations also
enforce tag immutability. Finally, CnC guarantees determinism as long as
steps are themselves deterministic—a contract strictly enforceable only in
Haskell.

Memory reuse: Another aspect of CnC run-time systems is garbage
collection. Unless the run-time system at some point deletes the items that
were put, the memory usage will continue to increase. Managed run-time
systems such as Java or .NET will not solve this problem, since an item
collection retains pointers to all instances. Recovering memory used by data
instances is a separate problem from traditional garbage collection. There
are two approaches identified thus far to determine when data instances are
dead and can safely be released (without breaking determinism). First, [7]
introduces a declarative slicing annotation for CnC that can be transformed
into a reference counting procedure for memory management. Second, the
C++ implementation provides a mechanism for specifying use counts for data
instances, which are discarded after their last use. Irrespective of which of
these mechanisms is used, data collections can be released after a graph has
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Parallel prog. model Declarative Deterministic Efficient

Intel TBB [17] No No Yes
.Net Task Par. Lib. No No Yes
Cilk No No Yes
OpenMP [3] No No Yes
CUDA No No Yes
Java Concurrency [16] No No Yes
Det. Parallel Java [6] No Hybrid Yes
High Perf. Fortran [14] Hybrid No Yes
X10 [5] Hybrid No Yes
Linda [9] Hybrid No Yes
Asynch. Seq. Processes [2] Yes Yes No
StreamIt[11] Yes Yes Yes
LabVIEW [19] Yes Yes Yes
CnC Yes Yes Yes

Table 1: Comparison of several parallel programming models.

finished running. Frequently, an application uses CnC for finite computations
inside a serial outer loop, thereby reclaiming all memory between iterations.

4 Related Work

Table 1 is used to guide the discussion in this section. This table classi-
fies programming models according to their attributes in three dimensions:
Declarative, Deterministic and Efficient. A few representative examples are
included for each distinct set of attributes. The reader can extrapolate this
discussion to other programming models with similar attributes in these three
dimensions.

A number of lower-level programming models in use today — e.g., Intel
TBB [17], .Net Task Parallel Library [18], Cilk, OpenMP [3], Nvidia CUDA,
Java Concurrency [16] — are non-declarative, non-deterministic, and effi-
cient. Here a programming model is considered to be efficient if there are
known implementations that deliver competitive performance for a reason-
ably broad set of programs. Deterministic Parallel Java [6] is an interesting
variant of Java; it includes a subset that is provably deterministic, as well as
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constructs that explicitly indicate when determinism cannot be guaranteed
for certain code regions, which is why it contains a “hybrid” entry in the
Deterministic column.

The next three languages in the table — High Performance Fortran (HPF)
[14], X10 [5], Linda [9] — contain hybrid combinations of imperative and
declarative programming in different ways. HPF combines a declarative lan-
guage for data distribution and data parallelism with imperative (procedu-
ral) statements, X10 contains a functional subset that supports declarative
parallelism, and Linda is a coordination language in which a thread’s inter-
actions with the tuple space is declarative. For a description of coordination
languages and their use, see [10].

Linda was a major influence on the CnC design. CnC shares two important
properties with Linda: both are coordination languages that specify compu-
tations and communications via a tuple/tag namespace, and both create new
computations by adding new tuples/tags to the namespace. However, CnC
also differs from Linda in many ways. For example, an in() operation in
Linda atomically removes the tuple from the tuple space, but a CnC get()
operation does not remove the item from the collection. This is a key reason
why Linda programs can be non-deterministic in general, and why CnC pro-
grams are provably deterministic. Further, there is no separation between
tags and values in a Linda tuple; instead, the choice of tag is implicit in the
use of wildcards. In CnC, there is a separation between tags and values, and
control tags are first class constructs like data items.

The last four programming models in the table are both declarative and
deterministic. Asynchronous Sequential Processes [2] is a recent model with a
clean semantics, but without any efficient implementations. In contrast, the
remaining three entries are efficient as well. StreamIt [11, 12] is representative
of a modern streaming language, and LabVIEW [19] is representative of a
modern dataflow language. Both streaming and dataflow languages have
had major influence on the CnC design. [4] is a pioneering paper in dataflow
languages. The CnC semantic model is based on dataflow in that steps are
functional and execution can proceed whenever data is ready.

However, CnC differs from dataflow in some key ways. The use of control
tags elevates control to a first-class construct in CnC. In addition, item collec-
tions allow more general indexing (as in a tuple space) compared to dataflow
arrays (I-structures). CnC is like streaming in that the internals of a step are
not visible from the graph that describes their connectivity, thereby estab-
lishing an isolation among steps. A producer step in a streaming model need
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not know its consumers; it just needs to know which buffers (collections) to
perform read and write operations on. However, CnC differs from stream-
ing in that put and get operations need not be performed in FIFO order,
and (as mentioned above) control is a first-class construct in CnC. Further,
CnC’s dynamic put/get operations on data and control collections serves as
a general model that can be used to express many kinds of applications that
would not be considered to be dataflow or streaming applications.

5 Future Directions

Future work on the CnC model will focus on incorporating more power in
the specification language (module abstraction, libraries of patterns) and
integration with persistent data models.

Combinations of static/dynamic treatment of scheduling and step/data
distribution will continue to be explored. Run-time strategies, such as for
reducing overhead for finer-grained parallelism and for memory management,
will be developed.

Static graph analysis will play a role in performance optimization in the
future.
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