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Scope of Course!
•  Fundamentals of parallel programming 

—  Task creation and termination, computation graphs, scheduling theory, 
futures, forall parallel loops, barrier synchronization (phasers), isolation & 
mutual exclusion, task affinity, bounded buffers, data flow, threads, GUI 
applications, data races, deadlock, memory models 

•  Introduction to parallel algorithms 
•  Habanero-Java (HJ) language, developed in the Habanero Multicore 

Software Research project at Rice 
•  Abstract executable performance model for HJ programs 
•  Java Concurrency 
•  Written assignments 
•  Programming assignments 

—  Abstract metrics 
—  Real parallel systems (8-core Intel, Rice SUG@R system) 

•  Beyond HJ and Java: introduction to CUDA and MPI 
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Acknowledgments for Todayʼs Lecture!
•  CS 194 course on “Parallel Programming for Multicore” taught 

by Prof. Kathy Yelick, UC Berkeley, Fall 2007 
— http://www.cs.berkeley.edu/~yelick/cs194f07/ 

•  COMP 322 Lecture 1 handout 
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What is Parallel Computing?!
•  Parallel computing: using multiple processors in parallel to solve 

problems more quickly than with a single processor, or with less 
energy 

•  Examples of parallel machines 
— A computer Cluster that contains multiple PCs with local memories 

combined together with a high speed network  
— A Symmetric Multi-Processor (SMP) that contains multiple 

processor chips connected to a single shared memory system 
— A Chip Multi-Processor (CMP) contains multiple processors (called 

cores) on a single chip, also called Multi-Core Computers 

•  The main motivation for parallel execution historically came 
from the desire for improved performance 
— Computation is the third pillar of scientific endeavor, in addition to 

Theory and Experimentation 

•  But parallel execution has also now become a ubiquitous 
necessity due to power constraints, as we will see 
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What is Parallel Programming?!

•  Specification of operations 
that can be executed in 
parallel 

•  A parallel program is 
decomposed into sequential 
subcomputations called tasks 

•  Parallel programming 
constructs define task 
creation, termination, and 
interaction 

BUS 
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Processor 
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Example of a Sequential Program: 
Computing the sum of array elements!

int sum = 0; 
for (int i=0 ; i < X.length ; i++ ) 
    sum += X[i]; 

Observations: 
•  The decision to sum up the 

elements from left to right was 
arbitrary 

•  The computation graph shows 
that all operations must be 
executed sequentially 
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Async and Finish Statements for Task 
Creation and Termination!

async  S !
•  Creates a new child task that 

executes statement S "
•  Parent task immediately 

continues to statement following 
the async"

finish S  !
  Execute S, but wait until all 

(transitively) spawned asyncs 
in Sʻs scope have terminated. "

  Implicit finish between start 
and end of main program"

//Task T0(Parent) 

finish {   //Begin finish 

  async  

    STMT1; //T1(Child) 

  //Continuation  

  STMT2;   //T0 

} //Continuation //End finish 

STMT3;     //T0 

STMT2 

async 

STMT1 

terminate 
wait 

T1 T0 

STMT3 
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Example of a Parallel Program: 
 Array Sum with two tasks!

// Start of Task T1 (main program) 
sum1 = 0; sum2 = 0;  
// Assume that sum1 & sum2 are fields 
finish { 
  // Compute sum1 (lower half) and sum2  
  // (upper half) in parallel 
  async for (int i=0; i < X.length/2; i++)   
      sum1 += X[i]; // Task T2 
  async for (int i=X.length/2; i < X.length; i++)  
      sum2 += X[i]; // Task T3 
} 
//Task T1 waits for Tasks T2 and T3 
int sum = sum1 + sum2; // Continuation of Task T1 

Computation Graph 

T1 

T2 

T1 

T3 

// Continuation of Task T1 

// Start of Task T1 (main program) 
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Why Parallel Computing Now?!
•  Researchers have been using parallel computing for 

decades:  
— Mostly used in computational science and engineering 
— Problems too large to solve on one computer; use 100s or 

1000s 

•  There have been higher level courses in parallel computing 
(COMP 422, COMP 522) at Rice for several years 

•  Many companies in the 80s/90s “bet” on parallel computing 
and failed 
— Sequential computers got faster too quickly for there to be a 

large market for specialized parallel computers 

•  Why is Rice adding a 300-level undergraduate course on 
parallel programming now? 
— Because the entire computing industry has bet on parallelism 
— There is a desperate need for all computer scientists and 

practitioners to be aware of parallelism 
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Number of processors used in Top 500 
computers from 1993 to 2010!

Source: 
www.top500.org 
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Technology Trends: Microprocessor 
Capacity!

2X transistors/Chip every 1-2 
years 
Called “Moore’s Law” 

Moore’s Law 

Microprocessors have 
become smaller, denser, 
and more powerful. 

Gordon Moore (co-founder of 
Intel) predicted in 1965 that 
the transistor density of 
semiconductor chips would 
double roughly every 1-2 
years 

Slide source: Jack Dongarra 
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Microprocessor Transistors and Clock Rate!
Growth in transistors per chip Increase in clock rate 

Old view: why bother with parallel programming for increased 
performance?  Just wait a year or two… 
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Power Wall!
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Scaling clock speed (business as usual) will not work 
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Parallelism Saves Power!
Power = (Capacitance) * (Voltage)2 * (Frequency) 
  Power α (Frequency)3 

Baseline example: single 1GHz core with power P 

Option A: Increase clock frequency to 2GHz  Power = 8P 

Option B: Use 2 cores at 1 GHz each  Power = 2P 

•  Option B delivers same performance as Option A with 4x less 
power … provided software can be decomposed to run in parallel! 
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Revolution is Happening Now!

Source: Intel, Microsoft (Sutter) 
and Stanford (Olukotun, Hammond) 

•  Chip density is 
continuing to increase 
~2x every 2 years 
— Clock speed is not 
— Number of processor 

cores may double 
instead 

•  There is little 
instruction-level 
parallelism (ILP) to be 
found by hardware 

•  Parallelism must be 
exposed to and 
managed by software 



COMP 322, Spring 2011 (V.Sarkar)	
16 

Implications!
•  These arguments are no long theoretical 
•  All major processor vendors are producing multicore chips 

— Every machine will soon be a parallel machine 
— All programmers will be parallel programmers??? 

•  Some may eventually be hidden in libraries, compilers, and high 
level languages 
— But a lot of work is needed to get there 

•  Big open questions: 
— What will be the killer applications for multicore machines? 
— How should the chips be designed? 
— How will they be programmed? 


