
COMP 322: Fundamentals of
Parallel Programming

Lecture 1: The What and Why of
Parallel Programming

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 1 10 January 2011

COMP 322, Spring 2011 (V.Sarkar)	
2

Scope of Course!
•  Fundamentals of parallel programming

—  Task creation and termination, computation graphs, scheduling theory,
futures, forall parallel loops, barrier synchronization (phasers), isolation &
mutual exclusion, task affinity, bounded buffers, data flow, threads, GUI
applications, data races, deadlock, memory models

•  Introduction to parallel algorithms
•  Habanero-Java (HJ) language, developed in the Habanero Multicore

Software Research project at Rice
•  Abstract executable performance model for HJ programs
•  Java Concurrency
•  Written assignments
•  Programming assignments

—  Abstract metrics
—  Real parallel systems (8-core Intel, Rice SUG@R system)

•  Beyond HJ and Java: introduction to CUDA and MPI

COMP 322, Spring 2011 (V.Sarkar)	
3

Acknowledgments for Todayʼs Lecture!
•  CS 194 course on “Parallel Programming for Multicore” taught

by Prof. Kathy Yelick, UC Berkeley, Fall 2007
— http://www.cs.berkeley.edu/~yelick/cs194f07/

•  COMP 322 Lecture 1 handout

COMP 322, Spring 2011 (V.Sarkar)	
4

What is Parallel Computing?!
•  Parallel computing: using multiple processors in parallel to solve

problems more quickly than with a single processor, or with less
energy

•  Examples of parallel machines
— A computer Cluster that contains multiple PCs with local memories

combined together with a high speed network
— A Symmetric Multi-Processor (SMP) that contains multiple

processor chips connected to a single shared memory system
— A Chip Multi-Processor (CMP) contains multiple processors (called

cores) on a single chip, also called Multi-Core Computers

•  The main motivation for parallel execution historically came
from the desire for improved performance
— Computation is the third pillar of scientific endeavor, in addition to

Theory and Experimentation

•  But parallel execution has also now become a ubiquitous
necessity due to power constraints, as we will see

COMP 322, Spring 2011 (V.Sarkar)	
5

What is Parallel Programming?!

•  Specification of operations
that can be executed in
parallel

•  A parallel program is
decomposed into sequential
subcomputations called tasks

•  Parallel programming
constructs define task
creation, termination, and
interaction

BUS

Core 0 Core 1

L1 cache L1 cache

L2 Cache

Schematic of a Dual-core
Processor

Task A Task B

COMP 322, Spring 2011 (V.Sarkar)	
6

Example of a Sequential Program: 
Computing the sum of array elements!

int sum = 0;
for (int i=0 ; i < X.length ; i++)
 sum += X[i];

Observations:
•  The decision to sum up the

elements from left to right was
arbitrary

•  The computation graph shows
that all operations must be
executed sequentially

+
+

+

X[0]

X[1]

X[2]

…

0

Computation Graph

COMP 322, Spring 2011 (V.Sarkar)	
7

Async and Finish Statements for Task
Creation and Termination!

async S !
•  Creates a new child task that

executes statement S "
•  Parent task immediately

continues to statement following
the async"

finish S !
  Execute S, but wait until all

(transitively) spawned asyncs
in Sʻs scope have terminated. "

  Implicit finish between start
and end of main program"

//Task T0(Parent)

finish { //Begin finish

 async

 STMT1; //T1(Child)

 //Continuation

 STMT2; //T0

} //Continuation //End finish

STMT3; //T0

STMT2

async

STMT1

terminate
wait

T1 T0

STMT3

COMP 322, Spring 2011 (V.Sarkar)	
8

Example of a Parallel Program: 
 Array Sum with two tasks!

// Start of Task T1 (main program)
sum1 = 0; sum2 = 0;
// Assume that sum1 & sum2 are fields
finish {
 // Compute sum1 (lower half) and sum2
 // (upper half) in parallel
 async for (int i=0; i < X.length/2; i++)
 sum1 += X[i]; // Task T2
 async for (int i=X.length/2; i < X.length; i++)
 sum2 += X[i]; // Task T3
}
//Task T1 waits for Tasks T2 and T3
int sum = sum1 + sum2; // Continuation of Task T1

Computation Graph

T1

T2

T1

T3

// Continuation of Task T1

// Start of Task T1 (main program)

COMP 322, Spring 2011 (V.Sarkar)	
9

Why Parallel Computing Now?!
•  Researchers have been using parallel computing for

decades:
— Mostly used in computational science and engineering
— Problems too large to solve on one computer; use 100s or

1000s

•  There have been higher level courses in parallel computing
(COMP 422, COMP 522) at Rice for several years

•  Many companies in the 80s/90s “bet” on parallel computing
and failed
— Sequential computers got faster too quickly for there to be a

large market for specialized parallel computers

•  Why is Rice adding a 300-level undergraduate course on
parallel programming now?
— Because the entire computing industry has bet on parallelism
— There is a desperate need for all computer scientists and

practitioners to be aware of parallelism

COMP 322, Spring 2011 (V.Sarkar)	
10

Number of processors used in Top 500
computers from 1993 to 2010!

Source:
www.top500.org

COMP 322, Spring 2011 (V.Sarkar)	
11

Technology Trends: Microprocessor
Capacity!

2X transistors/Chip every 1-2
years
Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of
Intel) predicted in 1965 that
the transistor density of
semiconductor chips would
double roughly every 1-2
years

Slide source: Jack Dongarra

COMP 322, Spring 2011 (V.Sarkar)	
12

Microprocessor Transistors and Clock Rate!
Growth in transistors per chip Increase in clock rate

Old view: why bother with parallel programming for increased
performance? Just wait a year or two…

COMP 322, Spring 2011 (V.Sarkar)	
13

Power Wall!

4004
8008
8080

8085

8086

286 386
486

Pentium®
P6

1

10

100

1000

10000

1970 1980 1990 2000 2010
Year

Po
we

r
D
en

si
ty

 (
W

/c
m

2)

Hot Plate

Nuclear
Reactor

Rocket
Nozzle

Sun’s
Surface

Source: Patrick
Gelsinger, Intel®

Scaling clock speed (business as usual) will not work

COMP 322, Spring 2011 (V.Sarkar)	
14

Parallelism Saves Power!
Power = (Capacitance) * (Voltage)2 * (Frequency)
  Power α (Frequency)3

Baseline example: single 1GHz core with power P

Option A: Increase clock frequency to 2GHz Power = 8P

Option B: Use 2 cores at 1 GHz each Power = 2P

•  Option B delivers same performance as Option A with 4x less
power … provided software can be decomposed to run in parallel!

COMP 322, Spring 2011 (V.Sarkar)	
15
CS194 Lecure 15

Revolution is Happening Now!

Source: Intel, Microsoft (Sutter)
and Stanford (Olukotun, Hammond)

•  Chip density is
continuing to increase
~2x every 2 years
— Clock speed is not
— Number of processor

cores may double
instead

•  There is little
instruction-level
parallelism (ILP) to be
found by hardware

•  Parallelism must be
exposed to and
managed by software

COMP 322, Spring 2011 (V.Sarkar)	
16

Implications!
•  These arguments are no long theoretical
•  All major processor vendors are producing multicore chips

— Every machine will soon be a parallel machine
— All programmers will be parallel programmers???

•  Some may eventually be hidden in libraries, compilers, and high
level languages
— But a lot of work is needed to get there

•  Big open questions:
— What will be the killer applications for multicore machines?
— How should the chips be designed?
— How will they be programmed?

