
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 15: Point-to-point Synchronization,
Pipeline Parallelism, Phasers (contd)

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 15 16 February 2011

COMP 322, Spring 2011 (V.Sarkar)	

2

Announcements!
•  Homework 4 due by 5pm on Wednesday, Feb 16th

— We will try and return graded homeworks by Feb 23rd

•  Guest lecture on Bitonic Sort by John Mellor-Crummey on
Friday, Feb 18th

•  Feb 23rd lecture will be a Midterm Review
•  No lecture on Friday, Feb 25th since midterm is due that day

— Midterm will be a 2-hour take-home written exam
–  Closed-book, closed-notes, closed-computer

— Will be given out at lecture on Wed, Feb 23rd
— Must be handed in by 5pm on Friday, Feb 25th

COMP 322, Spring 2011 (V.Sarkar)	

3

Acknowledgments for Todayʼs Lecture!
•  [1] “X10: an object-oriented approach to non-uniform

computing”. Philippe Charles et al. OOPSLA 2005.
•  [5] Phasers: a unified deadlock-free construct for collective

and point-to-point synchronization. Jun Shirako et al. ICS ’08
•  Handout for Lectures 14 and 15

COMP 322, Spring 2011 (V.Sarkar)	

4

Point-to-Point Synchronization: Example 1  
(Left-Right Neighbor Synchronization)!

1.  finish { // Expanded finish-for-async version of forall
2.  for (point[i] : [1:m])
3.  async {
4.  doPhase1(i);

 // Iteration i waits for i-1 and i+1 to complete Phase 1
5   doPhase2(i);
6   }
7   }

•  Need synchronization where iteration i only waits for iterations
i−1 and i+1 to complete their work in doPhase1() before it
starts doPhase2(i)? (Less constrained than a barrier)

COMP 322, Spring 2011 (V.Sarkar)!18

Barrier & P-2-P Sync for 1-D
Averaging!

doPhase1(i)

doPhase2(i)

 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

COMP 322, Spring 2011 (V.Sarkar)	

5

•  Phaser allocation
— phaser ph = new phaser(mode);

–  Phaser ph is allocated with registration mode
–  Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

•  Registration Modes
—  phaserMode.SIG
—  phaserMode.WAIT
—  phaserMode.SIG_WAIT
—  phaserMode.SIG_WAIT_SINGLE

•  Phaser registration
— async phased (ph1<mode1>, ph2<mode2>, …) <stmt>

–  Spawned task is registered with ph1 in mode1, ph2 in mode2, …
–  Child task’s capabilities must be subset of parent’s
–  async phased <stmt> propagates all of parent’s phaser registrations to child

•  Synchronization
— next;

–  Advance each phaser that current task is registered on to its next phase
–  Semantics depends on registration mode

Summary of Phaser Construct!

COMP 322, Spring 2011 (V.Sarkar)	

6

Capability Hierarchy!

•  At any point in time, a task can be registered in one of four
modes with respect to a phaser: SIG_WAIT_SINGLE,
SIG_WAIT, SIG, or WAIT. The mode defines the set of
capabilities — signal, wait, single — that the task has with
respect to the phaser. The subset relationship defines a natural
hierarchy of the registration modes.

SIG_WAIT_SINGLE = { signal, wait, single }

SIG_WAIT = { signal, wait }

SIG = { signal } WAIT = { wait }

COMP 322, Spring 2011 (V.Sarkar)	

7

Semantics of next depends on registration mode!
SIG_WAIT: next = signal + wait!
SIG: next = signal (Donʼt wait for any task)!
WAIT: next = wait (Donʼt disturb any task)!

next operation!

signal!

wait!
next!

SIG! SIG_WAIT!SIG_WAIT! WAIT!

 A master task receives all signals and broadcasts a barrier completion!

COMP 322, Spring 2011 (V.Sarkar)	

8

Left-Right Neighbor Synchronization
Example for m=3 using Phasers!

COMP 322, Spring 2011 (V.Sarkar)	

9

Whiteboard picture from lecture  
(Computation Graph for previous slide)!

COMP 322, Spring 2011 (V.Sarkar)	

10

Left-Right Neighbor Synchronization
Example for General m!

COMP 322, Spring 2011 (V.Sarkar)!18

Barrier & P-2-P Sync for 1-D
Averaging!

doPhase1(i)

doPhase2(i)

 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

