
COMP 322: Fundamentals of  
Parallel Programming 

https://wiki.rice.edu/confluence/display/PARPROG/COMP322  

Lecture 17: Advanced Phaser Topics 

Vivek Sarkar 
Department of Computer Science 

Rice University 
vsarkar@rice.edu 

COMP 322  Lecture 17  21 February 2011 



COMP 322, Spring 2011 (V.Sarkar)	
2 

Announcements!
•  Feb 23rd lecture will be a Midterm Review 
•  No COMP 322 labs this week 
•  No lecture on Friday, Feb 25th since midterm exam is due that 

day 
— Midterm will be a 2-hour take-home written exam 

–  Closed-book, closed-notes, closed-computer 
— Will be given out at lecture on Wed, Feb 23rd 
— Must be handed in by 5pm on Friday, Feb 25th 

— Scope of midterm exam will be Lectures 1-15 and Lecture 17 
–  Lecture 16 (Bitonic Sort) will not be included in midterm exam 



COMP 322, Spring 2011 (V.Sarkar)	
3 

Acknowledgments for Todayʼs Lecture!
•  Phasers: a unified deadlock-free construct for collective and 

point-to-point synchronization. Jun Shirako et al. ICS ’08 
•  The fuzzy barrier: a mechanism for high speed synchronization 

of processors. Rajiv Gupta. In Proceedings of the third 
international conference on Architectural support for 
programming languages and operating systems, ASPLOS-III, 
pages 54–63, New York, NY, USA, 1989. ACM. 

•  Handout for Lectures 17 



COMP 322, Spring 2011 (V.Sarkar)	
4 

Adding Phaser Operations to the 
Computation Graph!

CG node = step 
Step boundaries are induced by continuation points 
•  async: source of a spawn edge 
•  end-finish: destination of join edges 
•  future.get(): destination of a join edge 
•  isolated-start: destination of serialization edges 
•  isolated-end: source of serialization edges 
•  signal, drop: source of signal edges 
•  wait: destination of wait edges 
•  next: modeled as signal + wait 
CG also includes an unbounded set of pairs of phase transition 

nodes for each phaser ph allocated during program execution 
•  ph.next-start(ii+1) and ph.next-end(ii+1) 



COMP 322, Spring 2011 (V.Sarkar)	
5 

Adding Phaser Operations to the 
Computation Graph (contd)!

CG edges enforce ordering constraints among the nodes 
•  continue edges capture sequencing of steps within a task 
•  spawn edges connect parent tasks to child async tasks 
•  join edges connect descendant tasks to their Immediately 

Enclosing Finish (IEF) operations and to get() operations for 
future tasks 

•  signal edges connect each signal or drop operation to the 
corresponding phase transition node, ph.next-start(ii+1) 

•  wait edges connect each phase transition node,            
ph.next-end(ii+1) to corresponding wait or next operations 

•  single edges connect each phase transition node, ph.next-start
(ii+1) to the start of a single statement instance, and from 
the end of that single statement to the phase transition node, 
ph.next-end(ii+1) 



COMP 322, Spring 2011 (V.Sarkar)	
6 

Left-Right Neighbor Synchronization 
Example for m=3 (Listing 1)!



COMP 322, Spring 2011 (V.Sarkar)	
7 

Computation Graph for m=3 example!
1, 2, 3 

6 

11 

16 

7-signal 7-wait 

12-signal 

17-signal 

12-wait 

17-wait 

ph1.next 
-start(01) 

ph1.next 
-end(01) 

ph2.next 
-start(01) 

ph2.next 
-end(01) 

ph3.next 
-start(01) 

ph3.next 
-end(01) 

8 

13 

18 

20-drop 20-end-finish 

spawn continue signal wait join 



COMP 322, Spring 2011 (V.Sarkar)	
8 

Computation Graph for m=3 example  
(without async/finish nodes and edges)!

6 

11 

16 

7-signal 7-wait 

12-signal 

17-signal 

12-wait 

17-wait 

ph1.next 
-start(01) 

ph1.next 
-end(01) 

ph2.next 
-start(01) 

ph2.next 
-end(01) 

ph3.next 
-start(01) 

ph3.next 
-end(01) 

8 

13 

18 

spawn continue signal wait join 



COMP 322, Spring 2011 (V.Sarkar)	
9 

Translation of Barrier to Phaser Version!



COMP 322, Spring 2011 (V.Sarkar)	
10 

Optimized One-Dimensional Iterative 
Averaging with Barrier Synchronization!

iter 

iter + 1 

Task i=0 Task i=1 Task i=2 



COMP 322, Spring 2011 (V.Sarkar)	
11 

Optimized One-Dimensional Iterative 
Averaging with Point-to-Point Synchronization!

iter 

iter+1 

Task i=0 Task i=1 Task i=2 



COMP 322, Spring 2011 (V.Sarkar)	
12 

Signal statement!
•  When a task T performs a signal operation, it notifies all the 

phasers it is registered on that it has completed all the work 
expected by other tasks in the current phase (“shared” work).  
— Since signal is a non-blocking operation, an early execution of signal 

cannot create a deadlock. 

•  Later, when T performs a next operation, the next degenerates 
to a wait since a signal has already been performed in the 
current phase. 

•  The execution of “local work” between signal and next is 
performed during phase transition 
— Referred to as a “split-phase barrier” or “fuzzy barrier” 



COMP 322, Spring 2011 (V.Sarkar)	
13 

Example of Split-Phase Barrier!



COMP 322, Spring 2011 (V.Sarkar)	
14 

Computation Graph for Split-Phase 
Barrier Example!

2 

4 

11 

5-signal 7-wait 

12-signal 14-wait 

ph.next 
-start(01) 

ph.next 
-end(01) 

8 

15 

20-drop 20-end-finish 

spawn continue signal wait join 

6 

13 



COMP 322, Spring 2011 (V.Sarkar)	
15 

Computation Graph for Split-Phase Barrier Example 
(without async and finish nodes and edges)!

4 

11 

5-signal 7-wait 

12-signal 14-wait 

ph.next 
-start(01) 

ph.next 
-end(01) 

8 

15 

spawn continue signal wait join 

6 

13 



COMP 322, Spring 2011 (V.Sarkar)	
16 

Optimized One-Dimensional Iterative Averaging with 
Split-Phase Point-to-Point Synchronization!


