
COMP 322: Fundamentals of
Parallel Programming

https://wiki.rice.edu/confluence/display/PARPROG/COMP322

Lecture 18: Midterm Review

Vivek Sarkar
Department of Computer Science

Rice University
vsarkar@rice.edu

COMP 322 Lecture 17 21 February 2011

COMP 322, Spring 2011 (V.Sarkar)	
2

Announcements!
•  No COMP 322 labs this week
•  No lecture on Friday, Feb 25th
•  Class survey to be conducted by undergraduate TAs,

Max Grossman and Christopher Nunu, during spring break
— Please make your best effort to participate. Your feedback will

impact how COMP 322 is taught in the second half of the semester.

•  Midterm exam to be handed out after today’s lecture
— 2-hour take-home written exam

–  Closed-book, closed-notes, closed-computer
— Must be handed in to Amanda Nokleby in Duncan Hall Room 3137 by

5pm on Friday, Feb 25th

–  You can slide it under her door id she’s not in
— Scope of midterm exam will be Lectures 1-15 and Lecture 17

–  Lecture 16 (Bitonic Sort) will not be included in midterm exam

COMP 322, Spring 2011 (V.Sarkar)	
3

Async and Finish Statements for Task
Creation and Termination (Lecture 1)!

async S !
•  Creates a new child task that

executes statement S "
•  Parent task immediately

continues to statement following
the async"

finish S !
  Execute S, but wait until all

(transitively) spawned asyncs
in Sʻs scope have terminated. "

  Implicit finish between start
and end of main program"

//Task T0(Parent)

finish { //Begin finish

 async

 STMT1; //T1(Child)

 //Continuation

 STMT2; //T0

} //Continuation //End finish

STMT3; //T0

STMT2

async

STMT1

terminate
wait

T1 T0

STMT3

COMP 322, Spring 2011 (V.Sarkar)	
4

Example of a Parallel Program: 
 Array Sum with two tasks (Lecture 1)!

// Start of Task T1 (main program)
sum1 = 0; sum2 = 0;
// Assume that sum1 & sum2 are fields
finish {
 // Compute sum1 (lower half) and sum2
 // (upper half) in parallel
 async for (int i=0; i < X.length/2; i++)
 sum1 += X[i]; // Task T2
 async for (int i=X.length/2; i < X.length; i++)
 sum2 += X[i]; // Task T3
}
//Task T1 waits for Tasks T2 and T3
int sum = sum1 + sum2; // Continuation of Task T1

Computation Graph

COMP 322, Spring 2011 (V.Sarkar)	
5

Continuations (Lecture 2)!
•  A continuation is one of two kinds of program points

— The point in the parent task immediately following an async
— The point immediately following an end-finish

•  Continuations are also referred to as task-switching points
— Program points at which a worker may switch execution between

different tasks

finish { // F1
 async A1;
 finish { // F2
 async A3;
 async A4;
 }
 S5;
}

Continuations

COMP 322, Spring 2011 (V.Sarkar)	
6

Computation Graphs for HJ Programs
(Lecture 3)!

•  A Computation Graph (CG) is an abstract data
structure that captures the dynamic execution of an
HJ program

•  The nodes in the CG are steps in the program’s
execution
— A step is a sequential subcomputation of a task that
contains no continuation points

— When a worker starts executing a step, it can execute
the entire step without interruption

— Steps need not be maximal i.e., it is acceptable to
split a step into smaller steps if so desired

COMP 322, Spring 2011 (V.Sarkar)	
7

Computation Graph Edges (Lecture 3)!
•  CG edges represent ordering constraints
•  There are three kinds of CG edges of interest in an

HJ program with finish &async operations
1. Continue edges define sequencing of steps within a

task
2. Spawn edges connect parent tasks to child async

tasks
3. Join edges connect async tasks to their

Immediately Enclosing Finish (IEF) operations

COMP 322, Spring 2011 (V.Sarkar)	
8

Computation Graph for previous HJ Example  
(Lecture 3)!

Observation: Step v16 can potentially execute in parallel with steps v3 … v15

COMP 322, Spring 2011 (V.Sarkar)	
9

Complexity Measures for Computation Graphs  
(Lecture 3)!

Define
•  time(N) = execution time of node N
•  WORK(G) = sum of time(N), for all nodes N in CG G

— WORK(G) is the total amount of work to be
performed in G

•  CPL(G) = length of a longest path in CG G, when
adding up the execution times of all nodes in the
path
— Such paths are called critical paths
— CPL(G) is the length of these paths (critical path
length)

COMP 322, Spring 2011 (V.Sarkar)	
10

Example (Lecture 3)!
•  Assume time(N) = 1 for all nodes in this graph

WORK(G) = 18

COMP 322, Spring 2011 (V.Sarkar)	
11

Example (contd, Lecture 3)!
•  Assume time(N) = 1 for all nodes in this graph

CPL(G) = 9

COMP 322, Spring 2011 (V.Sarkar)	
12

Example: Two-way Parallel Array Sum  
using Future Tasks (Lecture 4) !

Why are these semicolons needed?

COMP 322, Spring 2011 (V.Sarkar)	
13

Summing an arbitrary sized array using
Iterative method (Lecture 5)!

for (int stride = 1; stride < X.length ; stride *= 2) {
 // Compute size = number of additions to be performed in stride
 int size=ceilDiv(X.length,2*stride);
 finish for(int i = 0; i < size; i++)
 async {
 if ((2*i+1)*stride < X.length)
 X[2*i*stride]+=X[(2*i+1)*stride];
 } // finish-for-async
} // for

// Divide x by y, round up to next largest int, and return result
static int ceilDiv(int x, int y) { return (x+y-1) / y; }

COMP 322, Spring 2011 (V.Sarkar)	
14

Summing an arbitrary sized array using a
Recursive method and Future Tasks (Lecture 5)!
static int computeSum(int[] X, int lo, int hi) {
 if (lo > hi) return 0;
 else if (lo == hi) return X[lo];
 else {
 int mid = (lo+hi)/2;
 final future<int> sum1 =
 async<int> {return computeSum(X, lo, mid);};
 final future<int> sum2 =
 async<int> {return computeSum(X, mid+1, hi);};
 return sum1.get() + sum2.get();
 }
} // computeSum
int sum = computeSum(X, 0, X.length-1); // main program code

Can be replaced
by finish-async,
but future tasks
are more natural

COMP 322, Spring 2011 (V.Sarkar)	
15

Formal Definition of Data Races  
(Lecture 6)!

 Formally, a data race occurs on location L in a program
execution with computation graph CG if there exist steps S1
and S2 in computation graph CG such that:
1.  S1 does not depend on S2 and S2 does not depend on S1 i.e.,

there is no path of dependence edges from S1 to S2 or from S2
to S1 in CG, and

2.  Both S1 and S2 read or write L, and at least one of the accesses
is a write.

 Data races are challenging because it is usually impossible to
guarantee that all possible orderings of the accesses to a
location will be encountered during program testing.
 Thus, no amount of testing may be able to detect errors that
might only become manifest in production use.

COMP 322, Spring 2011 (V.Sarkar)	
16

Example of Incorrect Parallelization 
from Homework 1 (Lecture 6)!

1.  // Sequential version
2.  for (p = first; p != null; p = p.next) p.x = p.y + p.z;
3.  for (p = first; p != null; p = p.next) sum += p.x;
4. 
5.  // Incorrect parallel version
6.  for (p = first; p != null; p = p.next)
7.  async p.x = p.y + p.z;
8.  for (p = first; p != null; p = p.next)
9.  sum += p.x;

 Why was this version incorrect?

 What does its computation graph say about writes to p.x in
line 7 and reads of p.x in line 9?

COMP 322, Spring 2011 (V.Sarkar)	
17

Summary of forall statement (Lecture 7)!
forall (point [i1] : [lo1:hi1]) <body> !

forall (point [i1,i2] : [lo1:hi1,lo2:hi2]) <body> !

forall (point [i1,i2,i3] : [lo1:hi1,lo2:hi2,lo3:hi3]) <body> !

. . .!

•  forall statement creates multiple async child tasks, one per
iteration of the forall
— all child tasks can execute <body> in parallel
— child tasks are distinguished by index “points” ([i1], [i1,i2], …)

•  forall statement completes and parent task proceeds to the
following statement when all child tasks have completed (implicit
finish)

•  <body> can read local variables from parent (copy-in semantics
like async)

COMP 322, Spring 2011 (V.Sarkar)	
18

Amdahlʼs Law (Lecture 9)!
•  If q ≤ 1 is the fraction of WORK in a parallel program that

must be executed sequentially, then the best speedup that can
be obtained for that program is Speedup ≤ 1/q.

•  Observation follows directly from critical path length lower
bound on parallel execution time, tP ≥ CPL(G)

•  If fraction q of WORK is sequential then CPL(G) ≥ qWORK
•  Therefore, Speedup = t1/tP must be ≤ WORK/(qWORK) = 1/q

•  Sequential portion of WORK = q (also denoted as fS sometimes)
•  Parallel portion of WORK = 1-q (also denoted as fp sometimes)

COMP 322, Spring 2011 (V.Sarkar)	
19

HJ isolated statement 
(Lecture 10) !

isolated <body>
•  Two tasks executing isolated statements with interfering

accesses must perform the isolated statement in mutual
exclusion
— Two instances of isolated statements, ⟨stmt1⟩ and ⟨stmt2⟩, are said

to interfere with each other if both access a shared location, such
that at least one of the accesses is a write.

 Weak isolation guarantee: no mutual exclusion applies to non-
isolated statements i.e., to (isolated, non-isolated) and (non-
isolated, non-isolated) pairs of statement instances

•  Isolated statements may be nested (redundant)
•  Isolated statements must not contain any other parallel

statement: async, finish, get, forall
•  In case of exception, all updates performed by <body> before

throwing the exception will be observable after exiting <body>

COMP 322, Spring 2011 (V.Sarkar)	
20

Serialized Computation Graph for
Isolated Statements (Lecture 10)!

•  Model each instance of an isolated statement as a distinct step
(node) in the CG.

•  Need to reason about the order in which interfering isolated
statements are executed
— complicated because the order may vary from execution to

execution

•  Introduce Serialized Computation Graph (SCG) that includes a
specific ordering of all interfering isolated statements.
— SCG consists of a CG with additional serialization edges.
— Each time an isolated step, S′, is executed, we add a serialization

edge from S to S′ for each isolated step, S, that has already
executed such that S and S′ have interfering accesses.

— An SCG represents a set of executions in which all interfering
isolated statements execute in the same order.

COMP 322, Spring 2011 (V.Sarkar)	
21

Example of Serialized Computation Graph
with Serialization Edges (Lecture 10)!

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

!1

!2

!3 !4 !5

!6

Serialization edge v10: isolated { x ++; y = 10; }
v11: isolated { x++; y = 11; }
v16: isolated { x++; y = 16; }

COMP 322, Spring 2011 (V.Sarkar)	
22

Barrier Synchronization: HJʼs “next” statement
in forall construct (Lecture 12)!

rank.count = 0; // rank object contains an int field, count!

forall (point[i] : [0:m-1]) {!

 int r;!

 isolated {r = rank.count++;}!

 System.out.println(“Hello from task ranked “ + r);!

 next; // Acts as barrier between phases 0 and 1!

 System.out.println(“Goodbye from task ranked “ + r);!

}!

•  next each forall iteration suspends at next until all iterations arrive
(complete previous phase), after which the phase can be advanced
— If a forall iteration terminates before executing “next”, then the other

iterations do not wait for it
— Scope of synchronization is the closest enclosing forall statement
— Special case of “phaser” construct (will be covered in following lectures)

Phase 0

Phase 1

COMP 322, Spring 2011 (V.Sarkar)	
23

•  Phaser allocation
— phaser ph = new phaser(mode);

–  Phaser ph is allocated with registration mode
–  Phaser lifetime is limited to scope of Immediately Enclosing Finish (IEF)

•  Registration Modes
—  phaserMode.SIG
—  phaserMode.WAIT
—  phaserMode.SIG_WAIT
—  phaserMode.SIG_WAIT_SINGLE

•  Phaser registration
— async phased (ph1<mode1>, ph2<mode2>, …) <stmt>

–  Spawned task is registered with ph1 in mode1, ph2 in mode2, …
–  Child task’s capabilities must be subset of parent’s
–  async phased <stmt> propagates all of parent’s phaser registrations to child

•  Synchronization
— next;

–  Advance each phaser that current task is registered on to its next phase
–  Semantics depends on registration mode

Summary of Phaser Construct  
(Lecture 15)!

COMP 322, Spring 2011 (V.Sarkar)	
24

Capability Hierarchy!

•  At any point in time, a task can be registered in one of four
modes with respect to a phaser: SIG_WAIT_SINGLE,
SIG_WAIT, SIG, or WAIT. The mode defines the set of
capabilities — signal, wait, single — that the task has with
respect to the phaser. The subset relationship defines a natural
hierarchy of the registration modes.

SIG_WAIT_SINGLE = { signal, wait, single }

SIG_WAIT = { signal, wait }

SIG = { signal } WAIT = { wait }

COMP 322, Spring 2011 (V.Sarkar)	
25

Semantics of next depends on registration mode!
SIG_WAIT: next = signal + wait!
SIG: next = signal!
WAIT: next = wait!

next operation 
(Lecture 15)!

signal!

wait!
next!

SIG! SIG_WAIT!SIG_WAIT! WAIT!

 A master task receives all signals and broadcasts a barrier completion!

COMP 322, Spring 2011 (V.Sarkar)	
26

Left-Right Neighbor Synchronization Example
for m=3 using Phasers (Lecture 15)!

