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Announcements!
•  Graded midterm exams can be picked up from Amanda Nokleby 

in Duncan Hall room 3137 
•  Homework 5 (written assignment) has been posted 

— Deadline: 5pm on Friday, March 18th 

•  Homework 6 (HJ programming assignment) will be given on 
March 18th 

•  Homework 7 (Concurrent Java programming assignment) will be 
given on April 1st (really!) 



COMP 322, Spring 2011 (V.Sarkar)	

3 

Acknowledgments for Todayʼs Lecture!
•  Lecture 21 handout 
•  Maurice Herlihy and Nir Shavit. The art of multiprocessor 

programming. Morgan Kaufmann, 2008. 
— Optional text for COMP 322 
— Slides and code examples extracted from

http://www.elsevierdirect.com/companion.jsp?ISBN=9780123705914  
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Concurrent Objects!
•  A concurrent object is an object that can correctly handle 

methods invoked in parallel by different tasks or threads 
— Originally referred to as monitors 
— Also informally referred to as “thread-safe objects” 

•  For simplicity, it is usually assumed that the body of each 
method in a concurrent object is itself sequential 
— Assume that method does not create child async tasks 

•  Implementations of methods can be serial (e.g., enclose each 
method in an isolated statement like a critical section) or 
concurrent (e.g., ConcurrentHashMap, ConcurrentLinkedQueue 
and CopyOnWriteArraySet) 

•  A desirable goal is to develop method implementations that are 
concurrent while being as close to the semantics of the serial 
version as possible   
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The Big Question!!

•  Consider a simple FIFO (First In, First Out) queue as a 
canonical example of a concurrent object 
— Method q.enq(o) inserts object o at the tail of the queue 

–  Assume that there is unbounded space available for all 
enq() operations to succeed 

— Method q.deq() removes and returns the item at the head of 
the queue.  
–  Throws EmptyException if the queue is empty.  

•  What does it mean for a concurrent object like a FIFO 
queue to be correct? 
— What is a concurrent FIFO queue? 
— FIFO means strict temporal order 
— Concurrent means ambiguous temporal order 
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Describing the concurrent via the 
sequential  

time 

q.deq 

q.enq 

 enq  deq 

   lock() unlock() 

lock() unlock() 
Behavior is 
“Sequential” 

enq 

deq 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  
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Informal definition of Linearizability!
1. A linearizable execution is one in which the 

semantics of a set of method calls performed in 
parallel on a concurrent object is equivalent to that 
of some legal linear sequence of those method calls. 

2. A linearizable concurrent object is one for which all 
possible executions are linearizable. 
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Table 1: Example execution of a monitor-
based implementation of FIFO queue q!

Is this a linearizable execution? 

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x” 
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Table 2: Example execution of method 
calls on a concurrent FIFO queue q!

Is this a linearizable execution? 

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x” 

•  Would the execution be linearizable if q.deq() returned y 
instead of x? 
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Table 3: Example of a non-linearizable 
execution on a concurrent FIFO queue q!

Is this a linearizable execution? 

•  No! q.enq(x) must precede q.enq(y) in all linear sequences of 
method calls invoked on q.  It is illegal for the q.deq() 
operation to return y. 
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Alternate definition of Linearizability!
•  Assume that each method call takes effect “instantaneously” at 

some distinct point in time between its invocation and return. 
•  Execution is linearizable if we can choose instantaneous points 

that are consistent with a sequential execution in which methods 
are executed at those points 
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Table 2: Example execution of method 
calls on a concurrent FIFO queue q!

Is this a linearizable execution? 

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x” 

•  Would the execution be linearizable if q.deq() returned y 
instead of x? 
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An Example!

time time 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  
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Example!

time 

q.enq(x) 

time 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  



COMP 322, Spring 2011 (V.Sarkar)	

15 

Example!

time 

q.enq(x) 

q.enq(y) 

time 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  
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Example!

time 

q.enq(x) 

q.enq(y) q.deq(x) 

time 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  
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Example!

time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  
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Example!

time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  
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Another Example (like Table 3)!

time 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  
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Another Example!

time 

q.enq(x) 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  
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Another Example!

time 

q.enq(x) q.deq(y) 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  
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Another Example!

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  
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Another Example!

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  
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Another Example!

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  
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Figure 1: Computation Graph for monitor-
based implementation of FIFO queue (Table 1)!

i-begin q.enq(x) i-end 

i-begin q.enq(y) i-end i-begin q.deq():x i-end 

Continue edge 
Serialization edge 

Task B 

Task A 
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Figure 2: Creating a Reduced Graph to model 
Instantaneous Execution of Methods!

i-begin q.enq(x) i-end 

i-begin q.enq(y) i-end i-begin q.deq():x i-end 

Method q.enq(x) 

Method q.enq(y) Method q.deq():x 

Method 
q.enq(x) 

Method 
q.enq(y) 

Method 
q.deq():x 

Computation Graph 

Method-level Reduced Graph 
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Relating Linearizability to the 
Computation Graph model!

•  Given a reduced CG, a sufficient condition for 
linearizability is that the reduced CG is acyclic as in 
Figure 2.  

•  This means that if the reduced CG is acyclic, then 
the underlying execution must be linearizable.  

•  However, the converse is not necessarily true, as we 
will see. 
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Figure 3: example Computation Graph for concurrent 
implementation of FIFO queue (Table 2)!

i-begin q.enq(x)1 i-end 

i-begin q.enq(y) i-end i-begin q.deq():x i-end 

Continue edge Serialization edge Task B 

Task A 

q.enq(x)2 i-begin q.enq(x)3 i-end 

Computation Graph 

Method 
q.enq(x) 

Method 
q.enq(y) 

Method 
q.deq():x 

Method 
q.enq(x) 

Method 
q.enq(y) 

Method 
q.deq():x 

Method-level Reduced Graph 
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Figure 4: Reduced method-level graph 
for Computation Graph in Figure 3!

•  Example of linearizable execution graph for which reduced 
method-level graph is cyclic 

Method 
q.enq(x) 

Method 
q.enq(y) 

Method 
q.deq():x 

Method 
q.enq(x) 

Method 
q.enq(y) 

Method 
q.deq():x 

•  Approach to make cycle test more precise for linearizability 
•  Decompose concurrent object method into a sequence of “try” 

steps followed by a sequence of “commit” steps 
•  Assume that each “commit” step’s execution does not use any 

input from any prior “try” step 
 Reduced graph can just reduce the “commit” steps to a single 

node instead of reducing the entire method to a single node  


