
COMP 322: Fundamentals of  
Parallel Programming 

Lecture 21: Linearizability of  
Concurrent Objects 

Vivek Sarkar 
Department of Computer Science 

Rice University 
vsarkar@rice.edu 

COMP 322  Lecture 21  11 March 2011 



COMP 322, Spring 2011 (V.Sarkar)	

2 

Announcements!
•  Graded midterm exams can be picked up from Amanda Nokleby 

in Duncan Hall room 3137 
•  Homework 5 (written assignment) has been posted 

— Deadline: 5pm on Friday, March 18th 

•  Homework 6 (HJ programming assignment) will be given on 
March 18th 

•  Homework 7 (Concurrent Java programming assignment) will be 
given on April 1st (really!) 



COMP 322, Spring 2011 (V.Sarkar)	

3 

Acknowledgments for Todayʼs Lecture!
•  Lecture 21 handout 
•  Maurice Herlihy and Nir Shavit. The art of multiprocessor 

programming. Morgan Kaufmann, 2008. 
— Optional text for COMP 322 
— Slides and code examples extracted from

http://www.elsevierdirect.com/companion.jsp?ISBN=9780123705914  



COMP 322, Spring 2011 (V.Sarkar)	

4 

Concurrent Objects!
•  A concurrent object is an object that can correctly handle 

methods invoked in parallel by different tasks or threads 
— Originally referred to as monitors 
— Also informally referred to as “thread-safe objects” 

•  For simplicity, it is usually assumed that the body of each 
method in a concurrent object is itself sequential 
— Assume that method does not create child async tasks 

•  Implementations of methods can be serial (e.g., enclose each 
method in an isolated statement like a critical section) or 
concurrent (e.g., ConcurrentHashMap, ConcurrentLinkedQueue 
and CopyOnWriteArraySet) 

•  A desirable goal is to develop method implementations that are 
concurrent while being as close to the semantics of the serial 
version as possible   



COMP 322, Spring 2011 (V.Sarkar)	

5 

The Big Question!!

•  Consider a simple FIFO (First In, First Out) queue as a 
canonical example of a concurrent object 
— Method q.enq(o) inserts object o at the tail of the queue 

–  Assume that there is unbounded space available for all 
enq() operations to succeed 

— Method q.deq() removes and returns the item at the head of 
the queue.  
–  Throws EmptyException if the queue is empty.  

•  What does it mean for a concurrent object like a FIFO 
queue to be correct? 
— What is a concurrent FIFO queue? 
— FIFO means strict temporal order 
— Concurrent means ambiguous temporal order 



COMP 322, Spring 2011 (V.Sarkar)	

6 

Describing the concurrent via the 
sequential  

time 

q.deq 

q.enq 

 enq  deq 

   lock() unlock() 

lock() unlock() 
Behavior is 
“Sequential” 

enq 

deq 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  



COMP 322, Spring 2011 (V.Sarkar)	

7 

Informal definition of Linearizability!
1. A linearizable execution is one in which the 

semantics of a set of method calls performed in 
parallel on a concurrent object is equivalent to that 
of some legal linear sequence of those method calls. 

2. A linearizable concurrent object is one for which all 
possible executions are linearizable. 



COMP 322, Spring 2011 (V.Sarkar)	

8 

Table 1: Example execution of a monitor-
based implementation of FIFO queue q!

Is this a linearizable execution? 

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x” 



COMP 322, Spring 2011 (V.Sarkar)	

9 

Table 2: Example execution of method 
calls on a concurrent FIFO queue q!

Is this a linearizable execution? 

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x” 

•  Would the execution be linearizable if q.deq() returned y 
instead of x? 



COMP 322, Spring 2011 (V.Sarkar)	

10 

Table 3: Example of a non-linearizable 
execution on a concurrent FIFO queue q!

Is this a linearizable execution? 

•  No! q.enq(x) must precede q.enq(y) in all linear sequences of 
method calls invoked on q.  It is illegal for the q.deq() 
operation to return y. 



COMP 322, Spring 2011 (V.Sarkar)	

11 

Alternate definition of Linearizability!
•  Assume that each method call takes effect “instantaneously” at 

some distinct point in time between its invocation and return. 
•  Execution is linearizable if we can choose instantaneous points 

that are consistent with a sequential execution in which methods 
are executed at those points 



COMP 322, Spring 2011 (V.Sarkar)	

12 

Table 2: Example execution of method 
calls on a concurrent FIFO queue q!

Is this a linearizable execution? 

Yes!  Equivalent to “q.enq(x) ; q.enq(y) ; q.deq():x” 

•  Would the execution be linearizable if q.deq() returned y 
instead of x? 



COMP 322, Spring 2011 (V.Sarkar)	

13 

An Example!

time time 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  



COMP 322, Spring 2011 (V.Sarkar)	

14 

Example!

time 

q.enq(x) 

time 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  



COMP 322, Spring 2011 (V.Sarkar)	

15 

Example!

time 

q.enq(x) 

q.enq(y) 

time 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  



COMP 322, Spring 2011 (V.Sarkar)	

16 

Example!

time 

q.enq(x) 

q.enq(y) q.deq(x) 

time 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  



COMP 322, Spring 2011 (V.Sarkar)	

17 

Example!

time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  



COMP 322, Spring 2011 (V.Sarkar)	

18 

Example!

time 

q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) q.enq(x) 

q.enq(y) q.deq(x) 

q.deq(y) 

time 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  



COMP 322, Spring 2011 (V.Sarkar)	

19 

Another Example (like Table 3)!

time 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  



COMP 322, Spring 2011 (V.Sarkar)	

20 

Another Example!

time 

q.enq(x) 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  



COMP 322, Spring 2011 (V.Sarkar)	

21 

Another Example!

time 

q.enq(x) q.deq(y) 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  



COMP 322, Spring 2011 (V.Sarkar)	

22 

Another Example!

time 

q.enq(x) 

q.enq(y) 

q.deq(y) 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  



COMP 322, Spring 2011 (V.Sarkar)	

23 

Another Example!

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  



COMP 322, Spring 2011 (V.Sarkar)	

24 

Another Example!

time 

q.enq(x) 

q.enq(y) 

q.deq(y) q.enq(x) 

q.enq(y) 

Source: http://www.elsevierdirect.com/companions/9780123705914/Lecture%20Slides/03~Chapter_03.ppt  



COMP 322, Spring 2011 (V.Sarkar)	

25 

Figure 1: Computation Graph for monitor-
based implementation of FIFO queue (Table 1)!

i-begin q.enq(x) i-end 

i-begin q.enq(y) i-end i-begin q.deq():x i-end 

Continue edge 
Serialization edge 

Task B 

Task A 



COMP 322, Spring 2011 (V.Sarkar)	

26 

Figure 2: Creating a Reduced Graph to model 
Instantaneous Execution of Methods!

i-begin q.enq(x) i-end 

i-begin q.enq(y) i-end i-begin q.deq():x i-end 

Method q.enq(x) 

Method q.enq(y) Method q.deq():x 

Method 
q.enq(x) 

Method 
q.enq(y) 

Method 
q.deq():x 

Computation Graph 

Method-level Reduced Graph 



COMP 322, Spring 2011 (V.Sarkar)	

27 

Relating Linearizability to the 
Computation Graph model!

•  Given a reduced CG, a sufficient condition for 
linearizability is that the reduced CG is acyclic as in 
Figure 2.  

•  This means that if the reduced CG is acyclic, then 
the underlying execution must be linearizable.  

•  However, the converse is not necessarily true, as we 
will see. 



COMP 322, Spring 2011 (V.Sarkar)	

28 

Figure 3: example Computation Graph for concurrent 
implementation of FIFO queue (Table 2)!

i-begin q.enq(x)1 i-end 

i-begin q.enq(y) i-end i-begin q.deq():x i-end 

Continue edge Serialization edge Task B 

Task A 

q.enq(x)2 i-begin q.enq(x)3 i-end 

Computation Graph 

Method 
q.enq(x) 

Method 
q.enq(y) 

Method 
q.deq():x 

Method 
q.enq(x) 

Method 
q.enq(y) 

Method 
q.deq():x 

Method-level Reduced Graph 



COMP 322, Spring 2011 (V.Sarkar)	

29 

Figure 4: Reduced method-level graph 
for Computation Graph in Figure 3!

•  Example of linearizable execution graph for which reduced 
method-level graph is cyclic 

Method 
q.enq(x) 

Method 
q.enq(y) 

Method 
q.deq():x 

Method 
q.enq(x) 

Method 
q.enq(y) 

Method 
q.deq():x 

•  Approach to make cycle test more precise for linearizability 
•  Decompose concurrent object method into a sequence of “try” 

steps followed by a sequence of “commit” steps 
•  Assume that each “commit” step’s execution does not use any 

input from any prior “try” step 
 Reduced graph can just reduce the “commit” steps to a single 

node instead of reducing the entire method to a single node  


