
COMP 322: Fundamentals of  
Parallel Programming 

https://wiki.rice.edu/confluence/display/PARPROG/COMP322  

Lecture 22: Task Affinity with Places 

Vivek Sarkar 
Department of Computer Science 

Rice University 
vsarkar@rice.edu 

COMP 322  Lecture 22  14 March 2011 



COMP 322, Spring 2011 (V.Sarkar)	

2 

Announcements!
•  Homework 5 (written assignment) due by 5pm on Friday, March 

18th 
•  Homework 6 (HJ programming assignment) will be assigned on 

March 18th 
•  Homework 7 (Concurrent Java programming assignment) will be 

assigned on April 1st (really!) 



COMP 322, Spring 2011 (V.Sarkar)	

3 

Acknowledgments for Todayʼs Lecture!
•  Lecture 22 handout 
•  Randal E. Bryant & David R. O'Hallaron.  Computer Systems: A 

Programmer's Perspective, Second Edition. Prentice Hall, 2010. 
— Selected slides extracted from 

http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/
schedule.html  



COMP 322, Spring 2011 (V.Sarkar)	

4 

An example Memory Hierarchy --- what is 
the cost of a Memory Access? !

Registers 

L1 cache 
 (Static RAM) 

Main memory 
(Dynamic RAM) 

Local secondary storage 
(local disks) 

Larger,   
slower,  
cheaper  
per byte 

Remote secondary storage 
(tapes, distributed file systems, Web servers) 

Local disks hold files 
retrieved from disks 
on remote network 
servers 

Main memory holds disk 
blocks retrieved from local 
disks 

L2 cache 
(Static RAM) 

L1 cache holds cache lines 
retrieved from L2 cache 

CPU registers hold words 
retrieved from L1 cache 

L2 cache holds cache lines 
retrieved from main memory 

L0: 

L1: 

L2: 

L3: 

L4: 

L5: 

Smaller, 
faster, 
costlier 
per byte 

Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx 



COMP 322, Spring 2011 (V.Sarkar)	

5 

Cache Memories!
•  Cache memories are small, fast SRAM-based memories managed 

automatically in hardware.  
— Hold frequently accessed blocks of main memory 

•  CPU looks first for data in caches (e.g., L1, L2, and L3), then 
in main memory. 

•  Typical system structure: 

Main 
memory 

I/O 
bridge Bus interface 

ALU 

Register file 
CPU chip 

System bus Memory bus 

Cache  
memories 

Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx 



COMP 322, Spring 2011 (V.Sarkar)	

6 

Metric   1980  1985  1990  1995  2000  2005  2010  2010:1980 

$/MB   8,000  880  100  30  1  0.1  0.06  130,000 
access (ns)  375  200  100  70  60  50  40  9 
typical size (MB)  0.064  0.256  4  16  64  2,000  8,000  125,000  

Storage Trends!

DRAM 

SRAM 

Metric   1980  1985  1990  1995  2000  2005  2010  2010:1980 

$/MB   500  100  8  0.30  0.01  0.005  0.0003  1,600,000 
access (ms)  87  75  28  10  8  4  3  29 
typical size (MB)  1  10  160  1,000  20,000  160,000  1,500,000 1,500,000 

Disk 

Metric   1980  1985  1990  1995  2000  2005  2010  2010:1980 

$/MB   19,200  2,900  320  256  100  75  60  320 
access (ns)  300  150  35  15  3  2  1.5  200 

Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx 



COMP 322, Spring 2011 (V.Sarkar)	

7 

Table 1: Examples of Caching in the 
Hierarchy!

Ultimate goal: create a large pool of storage with average cost 
per byte that approaches that of the cheap storage near the 
bottom of the hierarchy, and average latency that approaches 
that of  fast storage near the top of the hierarchy. 

Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx 



COMP 322, Spring 2011 (V.Sarkar)	

8 

Locality!
•  Principle of Locality: Programs tend to use data and instructions 

with addresses near or equal to those they have used recently 

•  Temporal locality:   
— Recently referenced items are likely  

to be referenced again in the near future 

•  Spatial locality:   
— Items with nearby addresses tend  

to be referenced close together in time 

Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx 



COMP 322, Spring 2011 (V.Sarkar)	

9 

Locality Example!

•  Data references 
— Reference array elements in succession 

(stride-1 reference pattern). 
— Reference variable sum each iteration. 

•  Instruction references 
— Reference instructions in sequence. 
— Cycle through loop repeatedly.  

sum = 0; 
for (i = 0; i < n; i++) 

 sum += a[i]; 
return sum; 

Spatial locality 

Temporal locality 

Spatial locality 
Temporal locality 

Source: http://www.cs.cmu.edu/afs/cs/academic/class/15213-f10/www/lectures/09-memory-hierarchy.pptx 



COMP 322, Spring 2011 (V.Sarkar)	

10 

Memory Hierarchy in a Multicore 
Processor!

•  Memory hierarchy for a single Intel Xeon Quad-core 
E5440 HarperTown processor chip 
— A SUG@R node contains two such chips 

Regs 

L1  
d-cache 

L1  
i-cache 

L2 unified cache 

Core A 

L3 unified cache 
(shared by all cores) 

Main memory 

Regs 

L1  
d-cache 

Core B 

L1  
i-cache 

Regs 

L1  
d-cache 

L1  
i-cache 

L2 unified cache 

Core C 

Regs 

L1  
d-cache 

Core D 

L1  
i-cache 



COMP 322, Spring 2011 (V.Sarkar)	

11 

Programmer Control of Task Assignment 
to Processors!

•  The parallel programming constructs that weʼve 
studied thus far for task creation result in tasks that are 
assigned to processors dynamically by the HJ runtime 
system!
— Programmer does not have to worry about task assignment 

details!

•  Sometimes, programmer control of task assignment 
can lead to significant performance advantages due to 
improved locality!

•  Motivation for HJ “places”!
— Provide the programmer a mechanism to map each task to a 

set of core when the task is created!



COMP 322, Spring 2011 (V.Sarkar)	

12 

Places in HJ!

HJ Places 

Java Worker Threads 

HJ programmer defines mapping from 
HJ tasks to set of places!

HJ Tasks 

HJ runtime defines mapping from places 
to one or more worker Java threads per 
place !

The option “-places p:w” when executing 
an HJ program can be used to specify!
 p, the number of places"
 w, the number of worker threads per place"

OS threads 

Processor Cores 



COMP 322, Spring 2011 (V.Sarkar)	

13 

Example of –places 4:2 option on a SUG@R 
node (4 places w/ 2 workers per place)!

Regs 

L1  
d-cache 

L1  
i-cache 

L2 unified cache 

Core A 

Regs 

L1  
d-cache 

Core B 

L1  
i-cache 

Regs 

L1  
d-cache 

L1  
i-cache 

L2 unified cache 

Core C 

Regs 

L1  
d-cache 

Core D 

L1  
i-cache 

Regs 

L1  
d-cache 

L1  
i-cache 

L2 unified cache 

Core E 

Regs 

L1  
d-cache 

Core F 

L1  
i-cache 

Regs 

L1  
d-cache 

L1  
i-cache 

L2 unified cache 

Core G 

Regs 

L1  
d-cache 

Core H 

L1  
i-cache 



COMP 322, Spring 2011 (V.Sarkar)	

14 

Places in HJ!
here = place at which current task is executing 
place.MAX_PLACES = total number of places (runtime constant)"

Specified by value of p in runtime option, -places p:w"

place.factory.place(i) =  place corresponding to index i"
<place-expr>.toString() returns a string of the form “place(id=0)”"
<place-expr>.id returns the id of the place as an int"

async at(P) S!
•  Creates new task to execute statement S at place P"
•  async S is equivalent to async at(here) S"

Note that here in a child task for an async/future computation 
will refer to the place P at which the child task is executing, 
not the place where the parent task is executing 



COMP 322, Spring 2011 (V.Sarkar)	

15 

Listing 1: Example HJ program with places!


